Abstract:
A stage body has a holding surface for placing a substrate thereon. A predetermined embossed configuration is formed by embossing on the holding surface, and thereafter an alumina film in an amorphous state is formed by an anodic oxidation process on the holding surface. The alumina film having an amorphous structure is dense and strong to provide high wear resistance and to substantially prevent separation electrification. This provides a substrate stage having high wear resistance and capable of preventing separation electrification.
Abstract:
A plasma processing apparatus capable of reducing the use amount of a dielectric member is provided. The plasma processing apparatus 1 includes a metal processing chamber 4 configured to accommodate therein a substrate G to be plasma-processed; an electromagnetic wave source 34 that supplies an electromagnetic wave necessary to excite plasma in the processing chamber 4; one or more dielectric members 25 provided on a bottom surface of a cover 3 of the processing chamber 4 and configured to transmit the electromagnetic wave supplied from the electromagnetic wave source 34 into the inside of the processing chamber 4, a portion of each dielectric member 25 being exposed to the inside of the processing chamber 4; and a surface wave propagating section 51 installed adjacent to the dielectric member 25 and configured to propagate the electromagnetic wave along a metal surface exposed to the inside of the processing chamber 4.
Abstract:
A pressure type flow control device enabling a reduction in size and an installation cost by accurately controlling the flow of a fluid in a wide flow range. Specifically, the flow of the fluid flowing in an orifice (8) is calculated as Qc=KP1 (K is a proportionality factor) or Qc=KP2m(P1−P2)n (K is a proportionality factor and m and n are constants) by using a pressure P1 on the upstream side of the orifice and a pressure P2 on the downstream side of the orifice. A fluid passage between the downstream side of the control valve of the flow control device and a fluid feed pipe is formed of at least two or more fluid passages positioned parallel with each other. Orifices with different fluid flow characteristics are interposed in the fluid passages positioned parallel with each other. For the control of the fluid in a small flow area, the fluid in the small flow area is allowed to flow to one orifice. For the control of the flow in the large flow area, the fluid in the large flow area is allowed to flow to the other orifice by switching the fluid passages.
Abstract:
An organometal material gas is supplied into a low electron temperature and high density plasma excited by microwaves to form a thin film of a compound on a substrate as a film forming object. In this case, the temperature of a supply system for the organometal material gas is controlled by taking advantage of the relationship between the vapor pressure and temperature of the organometal material gas.
Abstract:
A magnetron sputtering apparatus is provided whereby film formation speed can be improved by increasing instantaneous erosion density on a target, and the target life can be prolonged by moving an erosion region over time to prevent local wear of the target, and realize uniform wear. Multiple plate-like magnets are installed around a columnar rotating shaft, and the columnar rotating shaft is rotated, thereby forming a high-density erosion region on a target to increase film formation speed, and the erosion region is moved along with rotation of the columnar rotating shaft, thereby wearing the target uniformly.
Abstract:
An interlayer insulation film can be produced by laminating a hydrocarbon layer containing an Si atom and a fluorocarbon layer containing an N atom on each other, wherein the hydrocarbon layer contains an H atom and a C atom at such a ratio that the ratio of the number of C atoms to the number of H atoms (H/C) becomes 0.8 to 1.2. The interlayer insulation film makes it possible to suppress generation of a leak current and the film shrinkage which may be caused by thermal annealing and has a low dielectric constant and is stable.
Abstract:
Provided is a magnetron sputtering apparatus that increases an instantaneous plasma density on a target to improve a film forming rate. The magnetron sputtering apparatus includes a substrate to be processed, a target installed to face the substrate and a rotary magnet installed at a side opposite to the substrate across the target. In the magnetron sputtering apparatus, plasma loops are formed on a target surface. The plasma loops are generated, move and disappear in an axis direction of the rotary magnet according to a rotation of the rotary magnet.
Abstract:
The present invention provides a vacuum thermal insulating valve that may be used at high temperature in gas supply systems or gas exhaust systems, and also may be made substantially small and compact in size owing to its excellent thermal insulating performance. With a vacuum thermal insulating valve comprising a valve equipped with a valve body and an actuator, and a vacuum thermal insulating box that houses the valve, the afore-mentioned vacuum thermal insulating box S is formed by a square-shaped lower vacuum jacket S5 having a cylinder-shaped vacuum thermal insulating pipe receiving part J on a side and with its upper face made open, and the square-shaped upper vacuum jackets S4, which is hermetically fitted to the lower vacuum jacket S5 and with its lower face made open.
Abstract:
In a pattern writing method for writing a pattern on a substrate by the use of projection patterns output from a mirror device including two-dimensionally arranged micromirrors, exposure is implemented by ON/OFF controlling each micromirror and partly overlapping the projection patterns from the mirror device at least in a one-dimensional direction, thereby accurately controlling the exposure of intermediate amounts of light.
Abstract:
A gas ejected from a sonic nozzle toward the rear surface of a wafer. The flow speed of the gas flowing to the outer circumference side along the rear surface of the wafer is increased between the rear surface of the wafer and a second cup and is kept by Bernoulli's effects. Thus, flapping of wafer is suppressed. Furthermore, a resist solution is prevented from flowing around to the rear surface.