Abstract:
A method of measuring a porosity of a film, by measuring a refractive index of the film in a first environment having a first relative humidity to produce a first refractive index measurement. The refractive index of the film is measured in a second environment having a second relative humidity, where the first relative humidity is different from the second relative humidity, to produce a second refractive index measurement. Multiple gases can be used to create the first and second environments. The first refractive index measurement and the second refractive index measurement are input into a model that correlates refractive index to film porosity, to output the porosity of the film.
Abstract:
An illumination subsystem configured to provide illumination for a measurement system includes first and second light sources configured to generate light for measurements in different wavelength regimes. The illumination subsystem also includes a TIR prism configured to be moved into and out of an optical path from the first and second light sources to the measurement system. If the TIR prism is positioned out of the optical path, light from only the first light source is directed along the optical path. If the TIR prism is positioned in the optical path, light from only the second light source is directed along the optical path. Various measurement systems are also provided. One measurement system includes an optical subsystem configured to perform measurements of a specimen using light in different wavelength regimes directed along a common optical path. The different wavelength regimes include vacuum ultraviolet, ultraviolet, visible, and near infrared wavelength regimes.
Abstract:
A method for registering multiple 3D point sets by determining optimal relative positions and orientations of the 3D point sets. Initial values are determined for the rotation matrices corresponding to the relative orientations of reference frames of the 3D point sets. A registration error cost function is optimized on a product manifold of all of the rotation matrices to determine optimal values of the rotation matrices. The optimal values of the rotation matrices are used to determine optimal values for translation vectors corresponding to the relative positions of the reference frames of the 3D point sets. The 3D point sets are registered on a common reference frame using the optimal rotation matrices and the optimal translation vectors.
Abstract:
A method and apparatus for providing facility location plans for a network are disclosed. For example, the method identifies a facility and a number of nearest active clients associated with a minimized cost per unit demand of connecting these clients to this facility. The method then connects the number of nearest active clients to the facility associated with the minimized cost per unit demand. In one embodiment, the method iterates this process with the remaining clients until all demands have been assigned to facilities.
Abstract:
A heat sink includes a base and a heat exchange element monolithically connected to the base. The heat exchange element has a surface that at least partially bounds first and second paths through the heat exchange element. The surface forms an upper boundary of the first and second paths and includes an opening therethrough connecting the first and second paths.
Abstract:
An apparatus 100 comprising a first substrate 130 having a first surface 125, a second substrate 132 having a second surface 127 facing the first surface and an array 170 of metallic raised features 170 being located on the first surface, each raised feature being in contact with the first surface to the second surface, a portion of the raised features being deformed via a compressive force 305.
Abstract:
A method for conducting heat between a heat source and a heat sink includes disposing under a compressive force therebetween a plurality of thermally conducting unit cell structures that mechanically cooperate to form thereby a body structure having an aggregate thermal conductivity that changes in response to a compressive force exerted thereon, wherein an amount of said plurality of thermally conducting unit cell structures disposed therein is selectable to affect thereby a desired aggregate thermal conductivity in response to the compressive force.
Abstract:
A device to provide hyperspectral reflection spectrum, hyperspectral depolarization, and hyperspectral fluorescence spectrum data in a portable, remote sensing instrument. The device can provide a large range of remotely-sensed optical property data, presently only obtainable in laboratories, in a low-cost field instrument. Among its many uses, the present invention can be used by farmers as a tool for determining the nitrogen content of crops to optimize fertilizer laydown.
Abstract:
A solar thermochemical processing system is disclosed. The system includes a first unit operation for receiving concentrated solar energy. Heat from the solar energy is used to drive the first unit operation. The first unit operation also receives a first set of reactants and produces a first set of products. A second unit operation receives the first set of products from the first unit operation and produces a second set of products. A third unit operation receives heat from the second unit operation to produce a portion of the first set of reactants.