Abstract:
Multiplex modules for use in carrier aggregation receivers are disclosed. In an exemplary embodiment, an apparatus includes an LNA multiplexer configured to receive a plurality of RF signals at a plurality of input terminals and to combine the RF signals into a combined RF signal that is output from an output terminal. The apparatus also includes an LNA demultiplexer configured to receive the combined RF signal at an input port that is connected to the output terminal and to distribute the combined RF signal to a plurality of output ports.
Abstract:
Methods and apparatus including: setting up a plurality of configurations for a plurality of local oscillator (LO) paths of a carrier aggregation (CA) transceiver operating with a plurality of bands; calculating and comparing frequencies for each LO path of the plurality of LO paths and at least one divider ratio of LO dividers for each band of the plurality of bands to identify frequency conflicts; and reconfiguring the LO dividers for the plurality of LO paths and the plurality of bands when the frequency conflicts are identified.
Abstract:
A radio frequency (RF) front end having multiple low noise amplifiers modules is disclosed. In an exemplary embodiment, an apparatus includes at least one first stage amplifier configured to amplify received carrier signals to generate at least one first stage carrier group. Each first stage carrier group includes a respective portion of the carrier signals. The apparatus also includes second stage amplifiers configured to amplify the first stage carrier groups. Each second stage amplifier configured to amplify a respective first stage carrier group to generate two second stage output signals that may be output to different demodulation stages where each demodulation stage demodulates a selected carrier signal.
Abstract:
A device includes a multi-mode low noise amplifier (LNA) having a first amplifier stage, and a second amplifier stage coupled to the first amplifier stage, the second amplifier stage having a plurality of amplification paths configured to amplify a plurality of carrier frequencies, the first amplifier stage configured to bypass the second amplifier stage when the first amplifier stage is configured to amplify a single carrier frequency.
Abstract:
A device includes a load circuit configured to receive an amplified communication signal, the load circuit having a center tapped inductor structure configured to divide the amplified communication signal into a first portion and a second portion, the load circuit configured to resonate at a harmonic of the amplified communication signal.
Abstract:
A PLL operates in a first low bandwidth mode using a first control loop and in a second high bandwidth mode using a second control loop. The PLL includes a VCO that generates an output signal at a desired frequency used by a transmitter. When the transmitter switches from a High Power mode (HP TX) to a Low Power mode (LP TX), the PLL is perturbed (VCO no longer generates the desired frequency) and must resettle within an allocated time. In one example, the VCO frequency is 3.96 GHz and the settling time requirement is 25 microseconds. Upon switching from HP TX to LP TX, the PLL is switched to the second high bandwidth mode 15 microseconds and is then switched back to the first low bandwidth mode. The PLL resettles to within 1 ppm of the initial VCO frequency of 3.96 GHz within the allocated 25 microseconds.
Abstract:
This disclosure describes apparatuses, methods, and techniques for implementing a multimode frequency multiplier. In example implementations, an apparatus for generating a frequency includes a multimode frequency multiplier. The multimode frequency multiplier includes a multiphase generator and a reconfigurable frequency multiplier. The multiphase generator is configured to produce a first signal including multiple phase components and having a first frequency. The reconfigurable frequency multiplier is coupled in series with the multiphase generator. The reconfigurable frequency multiplier is configured to produce a second signal based on the first signal and having a second frequency that is a multiple of the first frequency.
Abstract:
An apparatus includes a low noise amplifier (LNA) multiplexer configured to receive a plurality of radio frequency (RF) signals at a plurality of input terminals and to combine the plurality of RF signals into a combined RF signal that is output at an output terminal. The LNA multiplexer includes a plurality of input signal paths, and each input signal path is coupleable to a respective input terminal of the plurality of input terminals and is configured to receive a respective RF signal of the plurality of RF signals. The apparatus further includes an LNA demultiplexer configured to receive the combined RF signal at an input port coupled to the output terminal and to distribute the combined RF signal to a plurality of output ports, each output port of the plurality of output ports configured to output the combined RF signal to a respective downconverter of a plurality of downconverters.
Abstract:
Certain aspects of the present disclosure generally relate to methods and apparatus for generating oscillating signals. For example, certain aspects of the present disclosure provide a phase-locked loop (PLL) having a first switch coupled to a sampling input node of the PLL, an integrator coupled to an output of the sampling circuit, and a voltage-controlled oscillator (VCO) having an input coupled to an output of the integrator. In certain aspects, the PLL may also include a feedback path coupled to an output of the VCO and a control input of the first switch.
Abstract:
Certain aspects of the present disclosure provide multi-way diversity receivers with multiple synthesizers. Such a multi-way diversity receiver may be implemented in a carrier aggregation (CA) transceiver. One example wireless reception diversity circuit generally includes three or more receive paths for processing received signals and two or more frequency synthesizing circuits configured to generate local oscillating signals to downconvert the received signals. Each of the frequency synthesizing circuits is shared by at most two of the receive paths, and each pair of the frequency synthesizing circuits may generate a pair of local oscillating signals having the same frequency.