Abstract:
An integrated electronic circuit is provided. The integrated electronic circuit includes a transconductance cell formed from transconductance cell devices. The integrated electronic circuit further includes active and passive decoupling circuits. The integrated electronic circuit also includes an oscillator having a tank that is direct current decoupled from the transconductance cell devices using the active and passive decoupling circuits to increase voltage swing and decrease phase noise of the oscillator.
Abstract:
Methods and apparatus for implementing stable self-starting and self-sustaining high-speed electrical nonlinear pulse (e.g., soliton, cnoidal wave, or quasi-soliton) oscillators. Chip-scale nonlinear pulse oscillator devices may be fabricated using III-V semiconductor materials (e.g., GaAs) to attain soliton pulse widths on the order of a few picoseconds or less (e.g., 1 to 2 picoseconds, corresponding to frequencies of approximately 300 GHz or greater). In one example, a nonlinear pulse oscillator is implemented as a closed loop structure that comprises a nonlinear transmission line and a distributed nonlinear amplifier arrangement configured to provide a self-adjusting gain as a function of an average voltage of the oscillator signal. In another example, a nonlinear oscillator employing a lumped nonlinear amplifier and a nonlinear transmission line in a closed loop arrangement may be used in combination with a two-port nonlinear transmission line that provides additional pulse compression for pulses circulating in the oscillator.
Abstract:
According to one exemplary embodiment, a voltage controlled oscillator configured to operate in low and high band modes includes a low band section and a high band section. The voltage controlled oscillator further includes a multi-tap inductor having a high inductance portion coupled to the low band section and a low inductance portion coupled to the high band section. The low band section is configured to provide a low frequency band oscillator output in the low band mode and the high band section is configure to provide a high frequency band oscillator output in the high band mode. The low band section is disabled in the high band mode and the high band section is disabled in the low band mode. A center tap of the multi-tap inductor is coupled to a supply voltage.
Abstract:
Circuits for processing radio frequency (“RF”) and microwave signals are fabricated using field effect transistors (“FETs”) that have one or more strained channel layers disposed on one or more planarized substrate layers. FETs having such a configuration exhibit improved values for, for example, transconductance and noise figure. RF circuits such as, for example, voltage controlled oscillators (“VCOs”), low noise amplifiers (“LNAs”), and phase locked loops (“PLLs”) built using these FETs also exhibit enhanced performance.
Abstract:
Circuits for processing radio frequency (“RF”) and microwave signals are fabricated using field effect transistors (“FETs”) that have one or more strained channel layers disposed on one or more planarized substrate layers. FETs having such a configuration exhibit improved values for, for example, transconductance and noise figure. RF circuits such as, for example, voltage controlled oscillators (“VCOs”), low noise amplifiers (“LNAs”), and phase locked loops (“PLLs”) built using these FETs also exhibit enhanced performance.
Abstract:
An injection-locked frequency divider is provided. The injection-locked frequency divider includes a voltage control oscillator (VCO) and a mixer. The VCO includes a LC resonance tank and a negative-resistance generator for generating a differential oscillation signal including a first and a second oscillation signals. The LC resonance tank adjusts a VCO reactance and resonates for generating the differential oscillation signal. The negative-resistance generator coupled to the LC resonance tank eliminates an equivalent resistance generated by the LC resonance tank and maintains the VCO to continuously oscillate. The mixer has a first and a second local input terminals respectively receiving the first and second injected signals included in a differential injected signal, and the first and second radio frequency input terminals respectively receiving the first and second oscillation signals for mixing the differential injected signal with the differential oscillation signal to adjust the output frequency of the differential oscillation signal.
Abstract:
A circuit arrangement for generating an IQ signal which comprises an oscillator (3) and a frequency divider (4). The oscillator (3) and the frequency divider (4) are arranged in a common current path between the supply and reference potentials (7, 5) in accordance with the proposed principle. It is possible to operate the two function blocks using a common BIAS current and additionally to save components.
Abstract:
A power source, a primary inductor, a load capacitance, and one or more tuned branch resonators and switching devices are coupled to generate pulses which represent a superposition of sinusoidal waveforms. The primary inductor is connected between the power source and the load. At the start of each cycle the load is coupled to ground and each tuned-branch resonators is reinitialized to re-energize the circuits and to stabilize the waveform when the frequencies of the sinusoidal waveforms are non-periodic.
Abstract:
A voltage-controlled oscillator has a resonance tank core providing a voltage-dependent resonance frequency, switching units connected with the resonance tank core for changing output voltage levels of the oscillator with a frequency corresponding to the resonance frequency of the resonance tank core. At least two of the switching units have pairs of Darlington transistors which are connected via a Darlington node. Output terminals are used for outputting the output voltage levels.
Abstract:
The new RTD-HBT differential oscillator circuit topology is proposed. At the nodes of the inductors and varactors in the conventional differential oscillator topology, each the RTD is attached to increase the magnitude of the negative conductance, which results in performance improvement in both the RF output power and phase noise. And, the differential sinusoidal voltage waveform which is essential for the wireless communication system are generated. In addition, the DC power consumption RTD-HBT differential oscillator circuit is similar to the conventional HBT differential oscillator due to the small DC power consumption performance of the RTD.