Abstract:
Disclosed are a touch display panel and a manufacturing method thereof, the touch display panel includes an array substrate and an opposed substrate disposed oppositely; a set of first electrode lines parallel to each other disposed on the array substrate or the opposed substrate; a set of second electrode lines parallel to each other disposed on the array substrate or the opposed substrate and arranged to cross the first electrode lines. The first electrode lines and the second electrode lines have no electrical connection therebetween, and the array substrate or the opposed substrate comprises a black matrix; the first electrode lines and/or the second electrode lines correspond to positions of the black matrix and the first electrode lines and/or the second electrode lines corresponding to positions of the black matrix are metal electrode lines.
Abstract:
An array substrate, a manufacturing method thereof and a display device are disclosed. The array substrate includes a substrate (10) and first thin-film transistors (TFTs) (21) and first electrodes (40) formed on the substrate (10). The first TFT (21) includes a gate electrode (200), an active layer (202), a source electrode (205) and a drain electrode (204). The first electrode (40) is electrically connected with the drain electrode (204) of the first TFT (21), at least covers an area of the active layer (202) of the first TFT, not overlapped with the source electrode (205) and the drain electrode (204), and can absorb ultraviolet (UV) light. The array substrate can solve the problem of reducing the display performance of the display device as the performances degrade and even fail due to UV irradiation of the TFTs.
Abstract:
The invention discloses a peeling liquid for a resist, which relates to an optical element and is used for removing the color resist and the protective layer on a color filter rapidly and efficiently. The peeling liquid for a color resist on a color filter comprises an alkali metal alkoxide with a mass percentage of 10-45%, an organic amine with a mass percentage of 10-30%, a surfactant with a mass percentage of 5-30%, a solvent with a mass percentage of 20-60%, and an alcohol with a mass percentage of 1-55% in terms of the peeling liquid for a resist with a mass percentage of 100%. The peeling liquid for a resist in invention is used for removing the color resist and the protective layer of the substandard product in a color filter.
Abstract:
A developing apparatus comprises: a photodetection unit, which emits detecting light toward the development area of the substrate to be developed within a scheduled time after the substrate to be developed is immersed into the developer solution; and a processing unit electrically coupled with the photodetection unit for determining the time interval which it takes for development to occur in the development area by means of the detecting light, and for determining that the developer solution is failed if the development time interval is determined to be out of the preset time range. A method for monitoring the developer solution is also provided.
Abstract:
A trans-reflective liquid crystal display array substrate and a manufacturing method thereof. The trans-reflective liquid crystal display array substrate (1) includes a substrate (11) and a thin film transistor (12) provided thereon. A black matrix (13) is provided on the thin film transistor (12) and a reflective layer (14) is located on the black matrix (14). The brightness of the liquid crystal display panel is increased by enlarging the pixel aperture ratio.
Abstract:
A pixel circuit includes a current control circuit, a time control circuit, and a light-emitting component, which are electrically coupled to one another in series along a common passage path of a driving current. The current control circuit is configured to control an intensity of the driving current according to a display data signal received thereby. The time control circuit is configured to control a passage time of the driving current according to a time data signal and a switch control signal received thereby. The light-emitting component is configured to emit a light according to the intensity and the passage time of the driving current.
Abstract:
The present disclosure relates to the field of display technology, and provides a display substrate and a method for manufacturing the same. The display substrate includes: a light-emitting substrate comprising a plurality of light-emitting regions which are arranged in parallel with a light propagation direction, and each light-emitting region is provided with a light-emitting layer; a defining layer provided on the light-emitting substrate and including a plurality of hollow-out portions, and the hollow-out portions correspond to the light-emitting regions one to one; and a plurality of micro-lenses provided in the hollow-out portions in a one-to-one correspondence manner. With the present disclosure, it is possible to prevent damage to an underlying light-emitting substrate when forming the micro-lenses and to enhance the stability of the micro-lenses.
Abstract:
An electrode, a method of manufacturing the same, a light-emitting device, and a display device are provided, the electrode includes: a reflective layer; and two double-layer adjusting units stacked on the reflective layer, each including an insulating layer and a conductive layer sequentially arranged and directly contacted in a direction away from the reflective layer. For at least one unit, a via hole is provided in the insulating layer, an electrode lead formed integrally with the conductive layer is provided in the via hole, and electrically connected to the reflective layer through the electrode lead. In each unit, a difference between a thickness of the conductive layer and a thickness of the insulating layer does not exceed a set threshold configured to control the thickness of the insulating layer. The conductive layer farthest from the reflective layer locates on different levels in light-emitting regions of different types of light-emitting devices.
Abstract:
The disclosure provides a pixel circuit and a driving method thereof, a display device. The pixel circuit includes: a storage capacitor having a first terminal coupled to a first node and a second terminal coupled to a second node; a light emitting diode having a first electrode coupled to a third node and a second electrode coupled to a second power supply terminal; a data writing circuit configured to write a data voltage into the second node; a compensation circuit configured to write a voltage of the third node, as a compensation voltage, into the first node; a driving transistor having a control terminal coupled to the first node, a first electrode coupled to a first power supply terminal and a second electrode coupled to the light emitting control circuit; a light emitting control circuit configured to control the light emitting diode to emit light.
Abstract:
What is described above are optional embodiments of the present disclosure. It should be noted that, for those of ordinary skills in the art, several modifications and refinements may be made without departing from the principle of the present disclosure. These modifications and refinements should also be considered to be within the scope of the present disclosure. What is described above are optional embodiments of the present disclosure. It should be noted that, for those of ordinary skills in the art, several modifications and refinements may be made without departing from the principle of the present disclosure. These modifications and refinements should also be considered to be within the scope of the present disclosure.