摘要:
A method and system for forming a semiconductor device having superior ESD protection characteristics. A resistive material layer is disposed within a contact hole on at least one of the contact stud upper and lower surface. In preferred embodiments, the integral resistor has a resistance value of between about one Ohm and about ten Ohms, or between 10 and 100 Ohms. Embodiments of the resistive layer include sputtered silicon material, a tunnel oxide, a tunnel nitride, a silicon-implanted oxide, a silicon-implanted nitride, or an amorphous polysilicon. Embodiments of the invention include SRAMs, bipolar transistors, SOI lateral diodes, MOSFETs and SiGe Transistors.
摘要:
Capacitor structures that have increased capacitance without compromising cell area are provided as well as methods for fabricating the same. A first capacitor structure includes insulating material present in holes that are formed in a semiconductor substrate, where the insulating material is thicker on the bottom wall of each capacitor hole as compared to the sidewalls of each hole. In another capacitor structure, deep capacitor holes are provided that have an isolation implant region present beneath each hole.
摘要:
The present invention provides a device design and method for forming the same that results in Fin Field Effect Transistors having different gains without negatively impacting device density. The present invention forms relatively low gain FinFET transistors in a low carrier mobility plane and relatively high gain FinFET transistors in a high carrier mobility plane. Thus formed, the FinFETs formed in the high mobility plane have a relatively higher gain than the FinFETs formed in the low mobility plane. The embodiments are of particular application to the design and fabrication of a Static Random Access Memory (SRAM) cell. In this application, the bodies of the n-type FinFETs used as transfer devices are formed along the {110} plane. The bodies of the n-type FinFETs and p-type FinFETs used as the storage latch are formed along the {100}. Thus formed, the transfer devices will have a gain approximately half that of the n-type storage latch devices, facilitating proper SRAM operation.
摘要:
A semiconductor memory device comprising: an SOI substrate having a thin silicon layer on top of a buried insulator; and an SRAM comprising four NFETs and two PFETs located in the thin silicon layer, each the NFET and PFET having a body region between a source region and a drain region, wherein the bodies of two of the NFETs are electrically connected to ground. Additionally, the bodies of the two PFETs are electrically connected to VDD.
摘要:
A zero threshold voltage (ZVt) pFET (104) and a method of making the same. The ZVt pFET is made by implanting a p-type substrate (112) with a retrograde n-well (116) so that a pocket (136) of the p-type substrate material remains adjacent the surface of the substrate. This is accomplished using an n-well mask (168) having a pocket-masking region (184) in the aperture (180) corresponding to the ZVt pFET. The n-well may be formed by first creating a ring-shaped precursor n-well (116′) and then annealing the substrate so as to cause the regions of the lower portion (140′) of the precursor n-well to merge with one another to isolate the pocket of p-type substrate material. After the n-well and isolated pocket of p-type substrate material have been formed, remaining structures of the ZVt pFET may be formed, such as a gate insulator (128), gate (132), source (120), and drain (124).
摘要:
Methods for fabricating a heterojunction bipolar transistor having a raised extrinsic base is provided in which the base resistance is reduced by forming a silicide atop the raised extrinsic base that extends to the emitter region in a self-aligned manner. The silicide formation is incorporated into a BiCMOS process flow after the raised extrinsic base has been formed. The present invention also provides a heterojunction bipolar transistor having a raised extrinsic base and a silicide located atop the raised extrinsic base. The silicide atop the raised extrinsic base extends to the emitter in a self-aligned manner. The emitter is separated from the silicide by a spacer.
摘要:
The present invention provides a device design and method for forming Field Effect Transistors (FETs) that have improved performance without negative impacts to device density. The present invention forms high-gain p-channel transistors by forming them on silicon islands where hole mobility has been increased. The hole mobility is increased by applying physical straining to the silicon islands. By straining the silicon islands, the hole mobility is increased resulting in increased device gain. This is accomplished without requiring an increase in the size of the devices, or the size of the contacts to the devices.
摘要:
The present invention provides a novel method of forming implants with Projection Gas-Immersion Laser Doping (PGILD) process that overcomes the disadvantages of the prior art methods. In particular, the preferred method applies a reflective coating over features before the application of the PGILD laser. The reflective coating lowers the amount of heat absorbed by the features, improving the reliability of the fabrication process. The preferred method is particularly applicable to the fabrication of field effect transistors (FETs). In this application, a gate stack is formed, and a reflective coating is over the gate stack. An anti-reflective coating (ARC) is then applied over the reflective coating. The anti-reflective coating reduces variability of the photolithographic process used to pattern the gate stack. After the gate stack is patterned, the anti-reflective coating is removed, leaving the reflective coating on the gate stack. The PGILD process can then be used to form source/drain doped regions on the transistors. The reflective coating reduces the amount of heat absorbed by the gate stack, and thus provides an improved method for fabricating transistors.
摘要:
A semiconductor device having borderless contacts thereby providing a device having a reduced overall size. In particular, the device includes a plurality of shallow trench isolations and a plurality of dielectric isolations thereon to separate the adjoining device components and prevent shorts. Sidewall spacers surrounding and extend slightly above the device gates and dielectric isolations to further prevent shorts. A layer of conductive material atop each gate and diffusion region provides for coplanar contact surfaces. A layer of silicide beneath select regions of the conductive layer enhance electrical conductivity within the device. An internal wireless interconnection to electrically connect diffusion regions of different logic devices within the structure is also provided.