Abstract:
Novel, wet developable anti-reflective coating compositions and methods of using those compositions are provided. The compositions comprise a polymer and/or oligomer having acid functional groups and dissolved in a solvent system along with a crosslinker and a photoacid generator. The preferred acid functional group is a carboxylic acid, while the preferred crosslinker is a vinyl ether crosslinker. In use, the compositions are applied to a substrate and thermally crosslinked. Upon exposure to light, the cured compositions will decrosslink, rendering them soluble in typical photoresist developing solutions (e.g., alkaline developers).
Abstract:
A topcoat material for immersion lithography and a method of performing immersion lithography using the topcoat material. The topcoat material includes a mixture of a first polymer and a second polymer. The first and second polymers of the topcoat material, when the topcoat material is formed into a topcoat layer between an immersion fluid and a photoresist layer, disperse non-homogenously throughout the topcoat layer.
Abstract:
Novel, wet developable anti-reflective coating compositions and methods of using those compositions are provided. The compositions comprise a polymer and/or oligomer having acid functional groups and dissolved in a solvent system along with a crosslinker and a photoacid generator. The preferred acid functional group is a carboxylic acid, while the preferred crosslinker is a vinyl ether crosslinker. In use, the compositions are applied to a substrate and thermally crosslinked. Upon exposure to light, the cured compositions will decrosslink, rendering them soluble in typical photoresist developing solutions (e.g., alkaline developers).
Abstract:
A method and a material for creating an antireflective coating on an integrated circuit. A preferred embodiment comprises applying a dark polymer material on a reflective surface, curing the dark polymer material, and roughening a top surface of the dark polymer material. The roughening can be achieved by ashing the dark polymer material in an ash chamber. The dark polymer material, preferably a black matrix resin or a polyimide black matrix resin, when ashed in an oxygen rich atmosphere for a short period of time, forms a surface that is capable of absorbing light as well as randomly refracting light it does not absorb. A protective cap layer may be formed on top of the ashed dark polymer material to provide protection for the dark polymer material.
Abstract:
A coating process comprises forming a patterned material layer on a substrate using a self-segregating polymeric composition comprising a polymeric photoresistive material and an antireflective coating material. The polymeric photoresistive material and the antireflective coating material that make up the self segregating composition are contained in a single solution. When depositing this solution on a substrate and removing the solvent, the two materials self-segregate into two layers. The substrate can comprise one of a ceramic, dielectric, metal, or semiconductor material and in some instances a material such as a BARC material that is not from the self segregating composition. The composition may also contain a radiation-sensitive acid generator and a base quencher. This produces a coated substrate having a uniaxial bilayer coating oriented in a direction orthogonal to the substrate with a top photoresistive coating layer and a bottom antireflective coating layer. The process may also include optionally coating a top coat material on the coated substrate. Pattern-wise exposing the coated substrate to imaging radiation and contacting the coated substrate with a developer, produces the patterned material layer wherein the optional top coat material and a portion of the photoresist layer are simultaneously removed from the coated substrate, thereby forming a patterned photoresist layer on the substrate. Alternatively, the optional top coat material, a portion of the photoresist layer and a portion of the bottom antireflective layers are simultaneously removed from the coated substrate by the developer, thereby forming a patterned photoresist layer on the substrate.
Abstract:
A polymer which has siloxane group at a main chain thereof and a composition including the same, for forming an organic anti-reflective coating layer are disclosed. The polymer for forming an organic anti-reflective coating layer is represented by following Formula. In Formula, R is hydrogen atom, C1˜C20 alkyl group, C1˜C10 alcohol group or epoxy group, R1 is independently hydrogen atom, n is an integer of 1-50, R2 is C1˜C20 alkyl group, C3˜C20 cycloalkyl group, C6˜C20 aryl group or C7˜C12 arylalkyl group, R3 is hydrogen atom, C1˜C10 alcohol group or epoxy group and POSS is a polyhedral oligosilsesquioxane.
Abstract:
A composition comprising (A) a polymer having an alcohol structure with plural fluorine atoms substituted at α- and α′-positions and having k=0.01-0.4 and (B) an aromatic ring-containing polymer having k=0.3-1.2 is used to form an antireflective coating. The ARC-forming composition can be deposited by the same process as prior art ARCs. The resulting ARC is effective in preventing reflection of exposure light in photolithography and has an acceptable dry etching rate.
Abstract:
Disclosed herein are a method of depositing a thin film and a method of manufacturing a semiconductor using the same, having high selectivity by increasing etching resistance while an extinction coefficient associated with anti-reflectivity is maintained low. The method of depositing a thin film according to the invention includes (a) depositing an carbon anti-reflective film on the bottom film of a substrate; and (b) adding a compound containing nitrogen (N), fluorine (F) or silicon (Si) to the surface or the inner portion of the carbon anti-reflective film, to deposit a thin film of a-C:N, a-C:F or a-C:Si, having high selectivity, to a thickness from 1 to 100 nm using an atomic layer deposition process. Therefore, an ultrathin film having etching resistance is formed on or in the carbon anti-reflective film and the density and compressive stress of the carbon anti-reflective film are increased, thus increasing etching selectivity.
Abstract:
There is provided an underlayer coating forming composition for lithography that is used in lithography process of manufacture of semiconductor device; and an underlayer coating having a high dry etching rate compared with photoresist. Concretely, it is a composition for forming an underlayer without use of crosslinking reaction by an strong acid catalyst, and an underlayer coating forming composition containing a component having an epoxy group (a polymer, a compound) and a component having a phenolic hydroxyl group, a carboxyl group, a protected carboxyl group or an acid anhydride structure (a polymer, a compound).