Abstract:
a method comprises forming a hardmask over one or more gate structures. The method further comprises forming a photoresist over the hardmask. The method further comprises forming an opening in the photoresist over at least one of the gate structures. The method further comprises stripping the hardmask that is exposed in the opening and which is over the at least one of the gate structures. The method further comprises removing the photoresist. The method further comprises providing a halo implant on a side of the at least one of the gate structures.
Abstract:
Disclosed herein are various methods and structures using contacts to create differential stresses on devices in an integrated circuit (IC) chip. An IC chip is disclosed having a p-type field effect transistor (PFET) and an n-type field effect transistor (NFET). One embodiment of this invention includes creating this differential stress by varying the deposition conditions for forming PFET and NFET contacts, for example, the temperature at which the fill materials are deposited, and the rate at which the fill materials are deposited. In another embodiment, the differential stress is created by filling the contacts with differing materials that will impart differential stress due to differing coefficient of thermal expansions. In another embodiment, the differential stress is created by including a silicide layer within the NFET contacts and/or the PFET contacts.
Abstract:
A reusable substrate and method for forming single crystal silicon solar cells are described. A method of forming a photovoltaic cell includes forming an intermediate layer on a monocrystalline silicon substrate, forming a monocrystalline silicon layer on the intermediate layer, and forming electrical features in the monocrystalline silicon layer. The method further includes forming openings in the monocrystalline silicon layer, and detaching the monocrystalline silicon layer from the substrate by selectively etching the intermediate layer through the openings.
Abstract:
Direct view color displays and design structures of direct view color displays. The direct view displays include micromirrors having un-tilted and tilted states and multiple color filters or color reflectors.
Abstract:
A structure and method of fabricating the structure. The structure includes a first region of a semiconductor substrate separated from a second region of the semiconductor substrate by trench isolation formed in the substrate; a first stressed layer over the first region; a second stressed layer over second region; the first stressed layer and second stressed layer separated by a gap; and a passivation layer on the first and second stressed layers, the passivation layer extending over and sealing the gap.
Abstract:
A method for forming feature on a substrate includes forming at least one layer of a feature material on a substrate, patterning a photolithographic resist material on the at least one layer of the feature material, removing portions of the feature material to define a feature, depositing a masking material layer over the resist material and exposed regions of the substrate, modifying a portion of the substrate, and removing the masking material layer and the resist material.
Abstract:
A phase-shifting photomask with a self aligned undercut rim-shifting element and methods for its manufacture are provided. One embodiment of the invention provides a method of manufacturing a phase-shifting photomask having a self aligned rim-shifting element, the method comprising: applying a patterning film to a first portion of a transparent substrate; etching the substrate to a depth to remove a second portion of the substrate not beneath the patterning film; etching the first portion of the substrate to undercut an area beneath the patterning film; and removing the patterning film, wherein the etched substrate forms a self-aligned undercut rim-shifting element.
Abstract:
A field effect transistor (FET) that includes a drain formed in a first plane, a source formed in the first plane, a channel formed in the first plane and between the drain and the source and a gate formed in the first plane. The gate is separated from at least a portion of the body by an air gap. The air gap is also in the first plane.
Abstract:
A method and structure comprise a field effect transistor structure that includes a first rectangular fin structure position on a substrate. The first rectangular fin structure has a bottom contacting the substrate, a top opposite the bottom, and sides between the top and the bottom. The structure additionally includes a second rectangular fin structure position on the substrate. Similarly, the second rectangular fin structure also has a bottom contacting the substrate, a top opposite the bottom, and sides between the top and the bottom. The sides of the second rectangular fin structure are parallel to the sides of the first rectangular fin structure. Further, a trench insulator is positioned on the substrate and is positioned between a side of the first rectangular fin structure and a side of the second rectangular fin structure. Additionally, a gate conductor is positioned on the trench insulator, positioned over the sides and the top of the first rectangular fin structure, and positioned over the sides and the top of the second rectangular fin structure. The gate conductor runs perpendicular to the sides of the first rectangular fin structure and the sides of the second rectangular fin structure. Also, a gate insulator is positioned between the gate conductor and the first rectangular fin structure and between the gate conductor and the second rectangular fin structure. The structure further includes a first cap on the top of the first rectangular fin structure. The first cap separates the gate conductor from the first rectangular fin structure.
Abstract:
Disclosed herein are various methods and structures using contacts to create differential stresses on devices in an integrated circuit (IC) chip. An IC chip is disclosed having a p-type field effect transistor (PFET) and an n-type field effect transistor (NFET). One embodiment of this invention includes creating this differential stress by varying the deposition conditions for forming PFET and NFET contacts, for example, the temperature at which the fill materials are deposited, and the rate at which the fill materials are deposited. In another embodiment, the differential stress is created by filling the contacts with differing materials that will impart differential stress due to differing coefficient of thermal expansions. In another embodiment, the differential stress is created by including a silicide layer within the NFET contacts and/or the PFET contacts.