Abstract:
Methods of forming a resistive memory device include forming an insulation layer on a semiconductor substrate including a conductive pattern, forming a contact hole in the insulation layer to expose the conductive pattern, forming a lower electrode in the contact hole, forming a variable resistive oxide layer in the contact hole on the lower electrode, forming a middle electrode in the contact hole on the variable resistive oxide layer, forming a buffer oxide layer on the middle electrode and the insulation layer, and forming an upper electrode on the buffer oxide layer. Related resistive memory devices are also disclosed.
Abstract:
A Resistance based Random Access Memory (ReRAM) can include a sense amplifier circuit that includes a first input coupled to a bit line of a reference cell in a first block of the ReRAM responsive to a read operation to a second block.
Abstract:
In one embodiment, a phase-change memory device has an oxidation barrier layer to protect against memory cell contamination or oxidation and a method of manufacturing the same. In one embodiment, a semiconductor memory device comprises a molding layer overlying a semiconductor substrate. The molding layer has a protrusion portion vertically extending from a top surface thereof. The device further includes a phase-changeable material pattern adjacent the protrusion portion and a lower electrode electrically connected to the phase-changeable material pattern.
Abstract:
A magnetic memory cell array device can include a first current source line extending between pluralities of first and second memory cells configured for respective simultaneous programming and configured to conduct adequate programming current for writing one of the pluralities of first and second memory cells, a first current source transistor coupled to the first current source line and to a word line, a programming conductor coupled to the first current source transistor and extending across bit lines coupled to the one of the pluralities of first and second memory cells, configured to conduct the programming current across the bit lines, a second current source transistor coupled to the programming conductor and configured to switch the programming current from the programming conductor to a second current source transistor output, a second current source line extending adjacent the one of the pluralities of first and second memory cells opposite the first current source line, a first bias circuit configured to apply a first bias voltage to the first or second memory cells selected for accessed during a read operation, and a second bias circuit configured to apply a second bias voltage to the first or second memory cells unselected for access during the read operation.
Abstract:
Methods of forming a resistive memory device include forming an insulation layer on a semiconductor substrate including a conductive pattern, forming a contact hole in the insulation layer to expose the conductive pattern, forming a lower electrode in the contact hole, forming a variable resistive oxide layer in the contact hole on the lower electrode, forming a middle electrode in the contact hole on the variable resistive oxide layer, forming a buffer oxide layer on the middle electrode and the insulation layer, and forming an upper electrode on the buffer oxide layer. Related resistive memory devices are also disclosed.
Abstract:
Provided is a method of manufacturing a semiconductor device having a switching device capable of preventing a snake current. First, a transition metal oxide layer and a leakage control layer are alternately stacked on a substrate 1 to 20 times to form a varistor layer. The transition metal oxide layer is formed to contain an excessive transition metal compared to its stable state. The leakage control layer may be formed of one selected from the group consisting of a Mg layer, a Ta layer, an Al layer, a Zr layer, a Hf layer, a polysilicon layer, a conductive carbon group layer, and a Nb layer.
Abstract:
There is provided a storage of a non-volatile memory device and a method of forming the same. The storage of example embodiments may include a bottom electrode, a first tunneling insulating layer on the bottom electrode, a middle electrode on the first tunneling insulating layer, a second tunneling insulating layer on the middle electrode, and a top electrode on the second tunneling insulating layer. The first and second tunneling insulating layers may be formed of metal oxide having a thickness from about several Å to about several tens Å and a storage may be formed to have a width of about several tens nm. Therefore, a multi bit storage, increased integration, increased operation speed and decreased power consumption may be realized.
Abstract:
Magnetic Random Access Memory (MRAM) devices include a lower electrode and a magnetic tunnel junction on the lower electrode. The magnetic tunnel junction includes a seed layer and a tunneling barrier that is oriented in a same direction as the most closely packed plane direction of the seed layer. An oxide layer may be provided between the lower electrode and the magnetic tunnel junction. The lower electrode may be a titanium-rich TiN layer having more than 50 atomic percent titanium content. Analogous fabrication methods are also described.
Abstract:
Methods of programming a RRAM device are provided. An increasing set current is applied to a data storing layer pattern of the RRAM device while measuring a resistance of the data storing layer pattern until the resistance indicates a set state in the data storing layer pattern. An increasing reset voltage is applied to the data storing layer pattern of the RRAM device while measuring the resistance of the data storing layer pattern until the resistance indicates a reset state in the data storing layer pattern.
Abstract:
A method of accessing a resistive memory device can include applying a predetermined voltage level to a first word line coupled to a first resistive memory cell block during a read operation of a second resistive memory cell block coupled to a second word line, A programming current can be conducted via a pair of opposing current source transistors located on first and second opposing sides of the first block to provide the programming current from the first end to the second end across bit lines coupled to resistive memory cells in the first block and to provide the programming current parallel to the second block.