Abstract:
A shading and light-responsive plate or film is composed or a transparent polymer containing a novel phthalic acid derivative metal salt and further near infrared ray shading plate or film is composed of a transparent polymer containing the aforesaid phthalic acid derivative copper salt or lead salt and a near infrared absorbing coloring material formed from a thioamide derivative or thiourea derivative.
Abstract:
The invention relates to a method for preparing an ester composition in which at least one activated phenolic ether group of a molecule is reacted with at least one haloformyl group of another molecule.
Abstract:
Fatty alkoxylate esters which are diesters or triesters of an aliphatic or aromatic dicarboxylic or tricarboxylic acid formed by reacting the acid with a stoichiometric excess of one or more polyalkoxylated fatty alcohols. Compositions for topical application are also disclosed including one or more active ingredients, water and an emollient agent of the fatty alkoxylate esters of the present invention.
Abstract:
An apparatus for producing ester includes an esterification device, a neutralization device connected to the esterification device, a distillation device connected to the neutralization device, a container connected to the distillation device for storing ester distilled by the distillation device, a filter casing connected to the container, and a ceramic filter set in the filter casing for filtering the distilled ester in a cross flow manner.
Abstract:
This invention relates to processes for making biodegradable surfactant. The process comprises several steps including an optional step. The first step is directed to reacting olefins with ZSM-23 catalyst to form oligomers having the formula (C.sub.3).sub.x, (C.sub.4).sub.x or mixtures thereof. Second, the oligomer is hydroformylated to form a saturated alcohol, for example, tridecanol. Next, the saturated alcohol is ethoxylated. Thereafter a nonionic biodegradable surfactant is recovered. This surfactant can be used in detergent formulations. A process is also taught for making esters which can be used as lubricants or plasticizers. A specific hydroformylation process is taught which utilizes modified cobalt carbonyl catalyst. Also, a specific ethoxylation process is taught. Products formed according to the latter two processes as well as their uses are also taught.
Abstract:
A method for producing an ester, which comprises reacting an organic acid or its anhydride with an alcohol in the presence of a catalyst of an organometallic compound, wherein an esterification reaction product containing the catalyst, is treated with a polyhydric alcohol.
Abstract:
The new compositions of matter of the present invention comprise compounds having one of the following formulas: ##STR1## wherein: R is hydrogen or methyl;n is 1 to 16;R.sub.1 and R.sub.2 are defined as R.sub.3 and R.sub.4 below or are joined to form a cycloalkyl, cycloalkenyl, aromatic or a heterocyclic ring containing an oxygen, nitrogen or sulfur atom or an alkoxy, amino, carboxyl, halo, hydroxyl, keto or a thiocarboxyl substituted derivative thereof;R.sub.3 and R.sub.4 are independently selected from (A) hydrogen, alkyl, cycloalkyo, alkenyl, cycloalkenyl, aryl, a heterocyclic ring containing an oxygen, nitrogen or sulfur atom, alkoxy, amino, carboxyl, halo, hydroxyl, keto or a thiocarboxyl and (B) substituted derivatives of the alkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl and the heterocyclic ring wherein the substitutions are alkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl, alkoxy, amino, carboxyl, halo, hydroxyl, keto or a thiocarboxyl;W may be a single bond, oxygen, NR.sub.5, or (CR.sub.6 R.sub.7).sub.m, wherein R.sub.5 is hydrogen, alkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl or a heterocyclic ring containing an oxygen, nitrogen or sulfur atom or a substituted derivative of alkyl, cycloalkyl, alkenyl, cycloalkenyl or aryl groups wherein the substitutions are alkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl, alkoxy, amino, carboxyl, halo, hydroxyl, keto or a thiocarboxyl where R.sub.6 and R.sub.7 are defined as R.sub.3 and R.sub.4 above and m is an integer from 1 to 12; andX is hydrogen or a salt-forming cation.Examples of such compositions are mono-iodopropargyl succinates, maleates, itaconates, diglycolates and phthalates. Other compounds include the mono-iodopropargyl esters of anhydrides such as dimethylglutaric anhydride and ethylenediamine tetraacetic dianhydride. They are used in microbiocidal formulations and effective microbiocides.
Abstract:
An improved process is provided for the preparation of esters of polyhalophthalic acids, polyhalobenzoic acids, and polyhalophthalic anhydride useful as flame retardants for thermoplastic and thermosetting resins, which comprises the reaction of the above acids or anhydride with alcohols in the presence of certain metal and metallorganic compounds as catalysts. Also provided are certain esters per se.
Abstract:
A process for increasing the direct esterification reaction rate between a diacid and 1,4-butanediol and for directly esterifying greater than 95% of the acid ends of the diacid by mixing in any order the diacid, the 1,4-butanediol and a catalyst compound selected from organo-titanium, organo-tin, and organo-zirconium compounds, to form a reaction mixture wherein the ratio of diol:diacid is at least 2:1 and then reacting the reaction mixture at an average temperature ranging between 190.degree. C. to 200.degree. C. for a period of time no longer than sixty minutes. The same process may be followed substituting ethylene glycol for 1,4-butanediol, provided the catalyst compound is added neat, further provided that the average reaction temperature ranges from 190.degree. C. to 200.degree. C., and also provided that the reaction mixture be reacted for a period of time no longer than seventy minutes. The product resulting from this process may be polycondensed or further treated to form a high molecular weight polymer.
Abstract:
Polyols containing polyether and polyester moieties, based on phthalic acid are described. A phthalic acid derivative is reacted with a polyether polyol to give the novel polyols which are useful not only in polyisocyanurate foams, but also polyurethane foams as well. The phthalic acid derivative may be phthalic acid, phthalic anhydride and an ester of phthalic acid, for example. The polyester polyol is made from an initiator selected from the group consisting of alkanolamines, alkyleneamines, arylamines, sucrose, glycerin, sorbitol, .alpha.-methylglucoside, .beta.-methylglucoside, and mixtures thereof. The polyester polyol may be made by alkoxylating the initiators.