Abstract:
The present invention relates to a compound as a reactive diluent for resin compositions as well as a resin composition comprising the same for coating an article and a resin obtained by curing said resin composition.
Abstract:
An internal electron donor compound for preparing α-olefin polymerization catalyst component, including two kinds of electron donors; the proportion of the two kinds of electron donors in the compounding preparation of the catalyst is determined via designed experiments so as to obtain a catalyst component having good comprehensive performance or a particular performance. The electron donor compound of the present invention can be used in the preparation of α-olefin polymerization and co-polymerization catalyst component, particular the preparation of propylene polymerization catalyst component, and is applicable to prepare the propylene polymerization catalyst component by reacting magnesium chloride-ethanols complex compound carrier with titanium tetrachloride and electron donors, or to directly prepare the propylene polymerization catalyst component by reacting magnesium chloride, alcohols, titanium tetrachloride, and internal electron donor. In addition, also provided is a theoretical basis for selecting a proper electron donor combination from a plurality of electron donors.
Abstract:
The present invention provides an ester compound of the following Formula 1, a plasticizer composition including the same and a resin composition including the plasticizer composition. In the above formula, R1 and R2 are different from each other and are independently at least one selected from the group consisting of C3-C10 alkyl of a non-branch type or including at least one branched chain, a substituted or unsubstituted alkyl aryl and a substituted or unsubstituted aryl. When the novel ester compound according to an embodiment of the present invention is used in a resin composition, eco-friendly property and good physical properties including plasticizing efficiency, tensile strength, elongation rate, migration loss, volatility resistance, etc. may be provided.
Abstract:
Provided are a plasticizer composition, a method of preparing the same, and a resin composition including the same. The plasticizer composition is a mixed composition of cyclohexane 1,3-diester-based materials prepared by transesterification and hydrogenation, and when used in the resin composition, exhibits excellent resistance to stress, and excellent physical properties such as migration resistance and volatility resistance as well as tensile strength and an elongation rate.
Abstract:
The present invention relates to a plasticizer composition, a resin composition, and preparation methods therefor, and can provide: a plasticizer capable of improving physical properties such as plasticizing efficiency, migration, tensile strength, elongation, stress migration and light resistance, which are required in sheet formulation, when used as a plasticizer of a resin composition by improving inferior physical properties generated because of structural limitations; and a resin composition containing the same.
Abstract:
The invention relates to bimesogenic compounds of formula I wherein R11, R12, MG11, MG12 and CG1 have the meaning given in claim 1, to the use of bimesogenic compounds of formula I in liquid crystal media and particular to flexoelectric liquid crystal devices comprising a liquid crystal medium according to the present invention.
Abstract:
Disclosed is a method of reducing the ultraviolet-light absorbing properties of a composition comprising dioctyl phthalate, the method comprising (a) obtaining a composition comprising dioctyl phthalate and phthalide, wherein said composition has an absorbance of greater than 0.1 at a wavelength of about from 230 to 360 nm, (b) contacting the composition with activated carbon, silica gel, or diatomaceous earth, for a sufficient amount of time to allow the phthalide to contact the activated carbon, silica gel, or diatomaceous earth, and (c) removing the composition from the activated carbon, silica gel, or diatomaceous earth, wherein the composition obtained from step (c) has an absorbance equal to or less than about 0.1 at a wavelength of about from 230 to 360 nm and has a reduced amount of phthalide when compared with the composition from step (a).
Abstract:
A process for preparing a hybrid polyester-polyether polyol comprises contacting a carboxyl group-containing component and an epoxide, optionally in the presence of one or more of a double metal cyanide catalyst, a superacid catalyst, a metal salt of a superacid catalyst and/or a tertiary amine catalyst, under conditions such that a hybrid polyester-polyether polyol is formed. The hybrid polyester-polyether polyol offers the advantages of both ester and ether functionalities when used in a polyurethane formulation, thus enhancing physical properties. The process results in products having narrow polydispersity, a low acid number and unsaturation, and reduced byproduct formation, particularly when the double metal cyanide catalyst is employed.
Abstract:
The present invention relates to the use of an additive as well as a process to improve the adhesion of a mortar to a building substrate, wherein the mortar is mixed with said additive and is applied to a building substrate selected from the group of polystyrene-containing substrates, polyolefin-containing substrates or polyvinyl chloride-containing substrates, the additive containing (i) a plasticizer that is liquid at 50° C. or lower, has a boiling point of 100° C. or higher, and that has a solubility parameter δ 25° C. between 22.5 MPa1/2 and MPa1/2; (ii) optionally, a filler that has a BET surface area of at least 40 m2/g; (iii) optionally, a biopolymer, (iv) optionally, a protective colloid; and (v) optionally, a water-insoluble film-forming (co)polymer based on ethylenically unsaturated monomers. The invention also covers an additive and a kit of parts suitable for use in the above process.
Abstract:
Isocyanurate-reactive mixture obtained by reacting an anhydride and a polyol; process for making it; polyisocyanate composition comprising this mixture; binder composition comprising such a polyisocyanate composition; the use of such a polyisocyanate composition and/or binder composition for making a polyisocyanurate and such polyisocyanurates.