摘要:
A semiconductor device with dynamic threshold transistors includes a complex element isolation region composed of a shallow element isolation region made of shallow trench isolation and deep element isolation regions provided on both sides of the shallow element isolation region. Since the shallow element isolation region is made of the shallow trench isolation, bird's beak in the shallow element isolation region is small. This prevents off leakage failure due to stress caused by the bird's beak. The deep element isolation region has an approximately constant width which allows the complex element isolation region to be wide.
摘要:
A semiconductor device with dynamic threshold transistors includes a complex element isolation region composed of a shallow element isolation region made of shallow trench isolation and deep element isolation regions provided on both sides of the shallow element isolation region. Since the shallow element isolation region is made of the shallow trench isolation, Bird's beak in the shallow element isolation region is small. This prevents off leakage failure due to stress caused by the bird's beak. The deep element isolation region has an approximately constant width which allows the complex element isolation region to be wide.
摘要:
A method for providing low power MOS devices that include buried wells specifically designed to provide a resistive path between the bulk material of the device and a well tie contact. By providing a resistive path, an equivalent RC circuit is introduced to the device that allows the bulk material potential to track the gate potential, thereby advantageously lowering the threshold voltage as the device turns on and raising the threshold voltage as the device turns off. In addition, the introduction of the resistive path also allows the bulk material potential to be controlled and stabilize at an equilibrium potential between clock cycles.
摘要:
A dynamic threshold voltage IGFET such as a MOSFET is operable at voltages of 0.6 volt or less. The threshold voltage of the transistor is reduced to zero volt or less by interconnecting the gate contact and the device body in which the voltage controlled channel is located. The channel region is delta-doped or counter-doped which permits superior performance for high-end VSLI applications. A selective epitaxy on a counter-doped substrate can be used in a counter-doped device. Doped wells can be used in a bulk silicon substrate in forming the devices. Trenching can be used to isolate devices in the doped wells.
摘要:
An example welding-type power supply includes: a transformer having a primary winding and first and second secondary windings; an input circuit configured to provide an input voltage to the primary winding of the transformer; first, second, third, and fourth switching elements, and a control circuit configured to: control the first, second, third, and fourth switching elements to selectively output a positive or negative output voltage without a separate rectifier stage by selectively controlling ones of the first, second, third, and fourth switching elements based on a commanded output voltage polarity and an input voltage polarity to the transformer; and prior to changing from a first output voltage polarity to a second output voltage polarity, controlling the first, second, third, and fourth switching elements to reverse the power flow to return reactive energy to an input circuit via the transformer.
摘要:
Embodiments of the disclosure are directed to advanced integrated circuit structure fabrication and, in particular, to integrated circuits with self-aligned tub architectures. Other embodiments may be described or claimed.
摘要:
Prior known static random access memory (SRAM) cells are required that a diffusion layer be bent into a key-like shape in order to make electrical contact with a substrate with a P-type well region formed therein, which would result in a decrease in asymmetry leading to occurrence of a problem as to the difficulty in micro-patterning. To avoid this problem, the P-type well region in which an inverter making up an SRAM cell is formed is subdivided into two portions, which are disposed on the opposite sides of an N-type well region NW1 and are formed so that a diffusion layer forming a transistor has no curvature while causing the layout direction to run in a direction parallel to well boundary lines and bit lines. At intermediate locations of an array, regions for use in supplying power to the substrate are formed in parallel to word lines in such a manner that one regions is provided per group of thirty two memory cell rows or sixty four cell rows.
摘要:
Prior known static random access memory (SRAM) cells are required that a diffusion layer be bent into a key-like shape in order to make electrical contact with a substrate with a P-type well region formed therein, which would result in a decrease in asymmetry leading to occurrence of a problem as to the difficulty in micro-patterning. To avoid this problem, the P-type well region in which an inverter making up an SRAM cell is formed is subdivided into two portions, which are disposed on the opposite sides of an N-type well region NW1 and are formed so that a diffusion layer forming a transistor has no curvature while causing the layout direction to run in a direction parallel to well boundary lines and bit lines. At intermediate locations of an array, regions for use in supplying power to the substrate are formed in parallel to word lines in such a manner that one regions is provided per group of thirty two memory cell rows or sixty four cell rows.
摘要:
In some examples, a transistor includes a drain, a channel, and a gate. The channel surrounds the drain and has a channel length to width ratio. The gate is over the channel to provide an active channel region that has an active channel region length to width ratio that is greater than the channel length to width ratio.
摘要:
Prior known static random access memory (SRAM) cells are required that a diffusion layer be bent into a key-like shape in order to make electrical contact with a substrate with a P-type well region formed therein, which would result in a decrease in asymmetry leading to occurrence of a problem as to the difficulty in micro-patterning. To avoid this problem, the P-type well region in which an inverter making up an SRAM cell is formed is subdivided into two portions, which are disposed on the opposite sides of an N-type well region NW1 and are formed so that a diffusion layer forming a transistor has no curvature while causing the layout direction to run in a direction parallel to well boundary lines and bit lines. At intermediate locations of an array, regions for use in supplying power to the substrate are formed in parallel to word lines in such a manner that one regions is provided per group of thirty two memory cell rows or sixty four cell rows.