Abstract:
There provided a device for effectively drawing a fine pattern using a permanent magnet. The device has an outer cylinder 201 composed of a cylindrical ferromagnet with a Z axis as a central axis, a cylindrical permanent magnet 202 located inside the outer cylinder and polarized along the Z axis direction, a correction coil 204 located inside the cylindrical permanent magnet with a gap from the cylindrical permanent magnet, for adjusting a magnetic field strength generated by the cylindrical permanent magnet along the Z axis direction, and a coolant passage 203 located in the gap between the cylindrical permanent magnet and the correction coil, for allowing a coolant to flow therethrough and controlling temperature changes in the cylindrical permanent magnet.
Abstract:
The present invention provides two ways to form a special permeability-discontinuity unit inside every sub-lens of a multi-axis magnetic lens, which either has a simpler configuration or has more flexibility in manufacturing such as material selection and mechanical structure. Accordingly several types of multi-axis magnetic lens are proposed for various applications. One type is for general application such as a multi-axis magnetic condenser lens or a multi-axis magnetic transfer lens, another type is a multi-axis magnetic non-immersion objective which can require a lower magnetomotive force, and one more type is a multi-axis magnetic immersion objective lens which can generate smaller aberrations. Due to using permeability-discontinuity units, every multi-axis magnetic lens in this invention can also be electrically excited to function as a multi-axis electromagnetic compound lens so as to further reduce aberrations thereof and/or realize electron beam retarding for low-voltage irradiation on specimen.
Abstract:
The charged-particle beam system includes a non-axisymmetric diode forms a non-axisymmetric beam having an elliptic cross-section. A focusing element utilizes a magnetic field for focusing and transporting the non-axisymmetric beam, wherein the non-axisymmetric beam is approximately matched with the channel of the focusing element.
Abstract:
The charged-particle beam system includes a non-axisymmetric diode forms a non-axisymmetric beam having an elliptic cross-section. A focusing element utilizes a magnetic field for focusing and transporting the non-axisymmetric beam, wherein the non-axisymmetric beam is approximately matched with the channel of the focusing element.
Abstract:
Axially symmetric magnetic fields are provided about the longitudinal axis of each beam of a multi-beam electron beam device. The magnetic field symmetry is independent of beam voltage, beam current and applied magnetic field strength. A flux equalizer assembly is disposed between the cathodes and the anodes and near the cathodes of a multi-beam electron beam device. The assembly includes a ferromagnetic flux plate completely contained within the magnetic focusing circuit of the device. The flux plate includes apertures for each beam of the multi-beam device. A flux equalization gap or gaps are disposed in the flux plate to provide a perturbation in the magnetic field in the flux plate which counters the asymmetry induced by the off-axis position of the beam. The gaps may be implemented in a number of ways all of which have the effect of producing a locally continuously varying reluctance that locally counters the magnetic field asymmetry. The flux equalizer assembly prevents or substantially reduces beam twist and maintains all of the electron beams of the device as linear beams.
Abstract:
This invention provides a charged particle source, which comprises an emitter and means of generating a magnetic field distribution. The magnetic field distribution is minimum, about zero, or preferred zero at the tip of the emitter, and along the optical axis is maximum away from the tip immediately. In a preferred embodiment, the magnetic field distribution is provided by dual magnetic lens which provides an anti-symmetric magnetic field at the tip, such that magnetic field at the tip is zero.
Abstract:
This invention provides a charged particle source, which comprises an emitter and means of generating a magnetic field distribution. The magnetic field distribution is minimum, about zero, or preferred zero at the tip of the emitter, and along the optical axis is maximum away from the tip immediately. In a preferred embodiment, the magnetic field distribution is provided by dual magnetic lens which provides an anti-symmetric magnetic field at the tip, such that magnetic field at the tip is zero.
Abstract:
This invention provides a charged particle source, which comprises an emitter and means of generating a magnetic field distribution. The magnetic field distribution is minimum, about zero, or preferred zero at the tip of the emitter, and along the optical axis is maximum away from the tip immediately. In a preferred embodiment, the magnetic field distribution is provided by dual magnetic lens which provides an anti-symmetric magnetic field at the tip, such that magnetic field at the tip is zero.
Abstract:
This invention provides a charged particle source, which comprises an emitter and means of generating a magnetic field distribution. The magnetic field distribution is minimum, about zero, or preferred zero at the tip of the emitter, and along the optical axis is maximum away from the tip immediately. In a preferred embodiment, the magnetic field distribution is provided by dual magnetic lens which provides an anti-symmetric magnetic field at the tip, such that magnetic field at the tip is zero.
Abstract:
An apparatus includes a magnetic adjustment lens positioned at the electron beam path between the electron source and sample, the magnetic adjustment lens excited by an electric coil, and a permanent magnet lens positioned below the magnetic adjustment lens to focus the electron beam onto the sample surface, the permanent magnet lens excited by one or more permanent ring magnets enclosed except on a bottom surface by a magnetic field conductor. The magnetic adjustment lens may be excited to eliminate magnetic field leakage of the permanent magnet lens.