Abstract:
An electron source comprises cathode means and a permanent magnet. A plurality of channels disposed in the magnet in a two dimensional array of rows and columns and extending between opposite poles of the magnet. The magnet generates, in each channel, a magnetic field which forms electrons received from the cathode means into an electron beam for guidance towards a target. Grid electrode means are disposed between the cathode means and the magnet for controlling flow of electrons from the cathode means into each channel. The grid electrode means comprises a plurality of parallel row conductors and a plurality of parallel column conductors arranged orthogonally to the row conductors. Each channel is located at a different intersection of a row conductor and a column conductor. Electric field isolation means reduces leakage of electric fields from each intersection.
Abstract:
Electrodes for establishing an electrostatic field to influence focus and deflection of an electron beam in a light valve have their surfaces which are exposed to the beam coated with chemically active, electrically conductive, sorbent materials in order to immediately sorb vapors which condense thereon. The electrodes are thus maintained uniformly conductive, precluding spurious charge buildup and facilitating precise control of the beam.
Abstract:
There provided a device for effectively drawing a fine pattern using a permanent magnet. The device has an outer cylinder 201 composed of a cylindrical ferromagnet with a Z axis as a central axis, a cylindrical permanent magnet 202 located inside the outer cylinder and polarized along the Z axis direction, a correction coil 204 located inside the cylindrical permanent magnet with a gap from the cylindrical permanent magnet, for adjusting a magnetic field strength generated by the cylindrical permanent magnet along the Z axis direction, and a coolant passage 203 located in the gap between the cylindrical permanent magnet and the correction coil, for allowing a coolant to flow therethrough and controlling temperature changes in the cylindrical permanent magnet.
Abstract:
An electron source having a cathode and a permanent magnet perforated by a plurality of channels extending between opposite poles thereof. The magnet generates, in each channel, a magnetic field which forms electrons received from the cathode into an electron beam for guidance towards a target. An electrode grid is disposed between the cathode and the magnet for controlling flow of electrons from the cathode into each channel. A magnetic field null region of each magnetic field is positioned at a location remote from the electrode grid. Because the null region is positioned remotely from the grid electrodes, flow of electrons can be improved without increasing electrode drive voltage.
Abstract:
There provided a device for effectively drawing a fine pattern using a permanent magnet. The device has an outer cylinder 201 composed of a cylindrical ferromagnet with a Z axis as a central axis, a cylindrical permanent magnet 202 located inside the outer cylinder and polarized along the Z axis direction, a correction coil 204 located inside the cylindrical permanent magnet with a gap from the cylindrical permanent magnet, for adjusting a magnetic field strength generated by the cylindrical permanent magnet along the Z axis direction, and a coolant passage 203 located in the gap between the cylindrical permanent magnet and the correction coil, for allowing a coolant to flow therethrough and controlling temperature changes in the cylindrical permanent magnet.
Abstract:
A display device having a cathode for emitting electrons and a permanent magnet. A two dimensional array of channels extends between opposite poles of the magnet. The magnet generates, in each channel, a magnetic field for forming electrons from the cathode into an electron beam. An electrode grid is disposed between the cathode and the magnet for controlling flow of electrons from the cathode into each channel. A screen has a phosphor coating having a plurality of groups of adjacent pixels facing the side of the magnet remote from the cathode. Each group corresponds to a different channel. A deflector sequentially addresses the electron beam from each channel to each pixel of the corresponding group.
Abstract:
A display device having a cathode for emitting electrons and a permanent magnet. A two dimensional array of channels extends between opposite poles of the magnet. The magnet generates, in each channel, a magnetic field for forming electrons from the cathode into an electron beam. A screen receives an electron beam from each channel. The screen has a phosphor coating facing the side of the magnet remote from the cathode. The phosphor coating having a plurality of pixels each corresponding to a different channel and each having a plurality of different color sub-pixels. An electrode grid is disposed between the cathode and the magnet for controlling flow of electrons from the cathode into each channel. A plurality of anodes each disposed on the surface of the magnet remote from the cathode, each corresponding to a different channel, and each having a first and second anode respectively extending along opposite sides of the corresponding channel for accelerating electrons through the corresponding channel and for sequentially addressing electrons emerging from the corresponding channel to different sub-pixels of the corresponding pixel. The first and second anodes associated with each channel are skewed relative to the sub-pixels of the corresponding pixel.
Abstract:
The present invention is an apparatus and multi-unit assembly which is able to achieve two different and highly desirable functions: A focusing of a charged particle beam; and a mass separation of desired ion species from unwanted ion species in traveling ion beams. The apparatus is a simply organized and easily manufactured article; is relatively light-weight and less expensive to make; and is easier to install, align, and operate than conventionally available devices.
Abstract:
Various embodiments of a vacuum electronic device, a hybrid magnet for a vacuum electronic device and methods of making a hybrid magnet for a vacuum electronic device are disclosed herein. In one embodiment, a hybrid magnet for a vacuum electronic device includes a first magnet, a second magnet positioned in spaced-apart relation with the first magnet and defining a gap between the first magnet and the second magnet, and a non-magnetic spacer positioned in a portion of the gap between the first magnet and second magnet and connected to the first magnet and the second magnet.
Abstract:
There provided a device for effectively drawing a fine pattern using a permanent magnet. The device has an outer cylinder 201 composed of a cylindrical ferromagnet with a Z axis as a central axis, a cylindrical permanent magnet 202 located inside the outer cylinder and polarized along the Z axis direction, a correction coil 204 located inside the cylindrical permanent magnet with a gap from the cylindrical permanent magnet, for adjusting a magnetic field strength generated by the cylindrical permanent magnet along the Z axis direction, and a coolant passage 203 located in the gap between the cylindrical permanent magnet and the correction coil, for allowing a coolant to flow therethrough and controlling temperature changes in the cylindrical permanent magnet.