Abstract:
Provided are nanocrystalline graphene and a method of forming the nanocrystalline graphene through a plasma enhanced chemical vapor deposition process. The nanocrystalline graphene may have a ratio of carbon having an sp2 bonding structure to total carbon within the range of about 50% to 99%. In addition, the nanocrystalline graphene may include crystals having a size of about 0.5 nm to about 100 nm.
Abstract:
Example embodiments relate to a layer structure having a diffusion barrier layer, and a method of manufacturing the same. The layer structure includes first and second material layers and a diffusion barrier layer therebetween. The diffusion barrier layer includes a nanocrystalline graphene (nc-G) layer. In the layer structure, the diffusion barrier layer may further include a non-graphene metal compound layer or a graphene layer together with the nc-G layer. One of the first and second material layers is an insulating layer, a metal layer, or a semiconductor layer, and the remaining layer may be a metal layer.
Abstract:
A multilayer structure includes a first material layer, a second material layer, and a diffusion barrier layer. The second material layer is connected to the first material layer. The second material layer is spaced apart from the first material layer. The diffusion barrier layer is between the first material layer and the second material layer. The diffusion barrier layer may include a two-dimensional (2D) material. The 2D material may be a non-graphene-based material, such as a metal chalcogenide-based material having a 2D crystal structure. The first material layer may be a semiconductor or an insulator, and the second material layer may be a conductor. At least a part of the multilayer structure may constitute an interconnection for an electronic device.
Abstract:
An electronic device includes a semiconductor layer, a tunneling layer formed of a material including a two-dimensional (2D) material so as to directly contact a certain region of the semiconductor layer, and a metal layer formed on the tunneling layer.
Abstract:
Example embodiments relate to a layer structure having a diffusion barrier layer, and a method of manufacturing the same. The layer structure includes first and second material layers and a diffusion barrier layer therebetween. The diffusion barrier layer includes a nanocrystalline graphene (nc-G) layer. In the layer structure, the diffusion barrier layer may further include a non-graphene metal compound layer or a graphene layer together with the nc-G layer. One of the first and second material layers is an insulating layer, a metal layer, or a semiconductor layer, and the remaining layer may be a metal layer.
Abstract:
Provided are an interconnect structure and an electronic device including the interconnect structure. The interconnect structure includes a dielectric layer including at least one trench, a conductive wiring filling an inside of the at least one trench, and a cap layer on at least one surface of the conductive wiring. The cap layer includes nanocrystalline graphene. The nanocrystalline includes nano-sized crystals.
Abstract:
Provided are an interconnect structure and an electronic device including the interconnect structure. The interconnect structure includes a dielectric layer including at least one trench, a conductive wiring filling an inside of the at least one trench, and a cap layer on at least one surface of the conductive wiring. The cap layer includes nanocrystalline graphene. The nanocrystalline includes nano-sized crystals.
Abstract:
Provided are lithium ion batteries including a nano-crystalline graphene electrode. The lithium ion battery includes a cathode on a cathode current collector, an electrolyte layer on the cathode, an anode on the electrolyte layer, and an anode current collector on the anode. The anode and the cathode include a plurality of grains having a size in a range from about 5 nm to about 100 nm. The cathode has a double bonded structure in which a carbon of the graphene is combined with oxygen.
Abstract:
A pellicle for a photomask, a reticle including the same, and an exposure apparatus for lithography are provided. The pellicle may include a pellicle membrane, and the pellicle membrane may include nanocrystalline graphene. The nanocrystalline graphene may have defects. The nanocrystalline graphene may include a plurality of nanoscale crystal grains, and the nanoscale crystal grains may include a two-dimensional (2D) carbon structure having an aromatic ring structure. The defects of the nanocrystalline graphene may include at least one of an sp3 carbon atom, an oxygen atom, a nitrogen atom, or a carbon vacancy.