Abstract:
The disclosure relates to a 5th generation (5G) or pre-5G communication system for supporting a higher data transmission rate than a 4th generation (4G) communication system, such as long term evolution (LTE). A circuit for detecting a reflection coefficient of an electronic device in a wireless communication system is provided. The circuit includes at least one processor, a plurality of analog to digital converters (ADCs), a plurality of RF elements, and a plurality of transmission lines including a first transmission line, a second transmission line, and a third transmission line, wherein the plurality of ADCs, the plurality of RF elements, and the plurality of transmission lines are correspondingly connected to each other, respectively, the plurality of ADCs are connected to the at least one processor.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). An electronic device, in a wireless communication system, may include: a processor, an antenna array, a plurality of first radio frequency (RF) paths related to a first stream, the first RF paths each including a transmit (TX) path and a receive (RX) path, and a plurality of second RF paths related to a second stream, the second RF paths each including a TX path and an RX path, and the processor may be configured to: generate a calibration signal for the antenna array, obtain characteristic information of the antenna array based on a phase difference or a gain difference between one TX path having the first stream and one RX path having the second stream obtained for each of measurement RF paths among the plurality of the first RF paths, and calibrate the plurality of the first RF paths based on the characteristic information.
Abstract:
A semiconductor package may include a package substrate with a top surface and a bottom surface opposite to the top surface, the top surface of the package substrate configured to have a semiconductor chip mounted thereon, a power block and a ground block in the package substrate, the power block configured as a power pathway penetrating the package substrate, and the ground block configured as a ground pathway penetrating the package substrate, first vias extended from the power block and the ground block, and the first vias electrically connected to the semiconductor chip, second vias extended from the power block and the ground block toward the bottom surface of the package substrate, and block vias to penetrate the power block and the ground block, the block vias electrically connected to the semiconductor chip and electrically separated from the power block and the ground block.
Abstract:
The disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). A method of operating an electronic device in a wireless communication system is provided. The method includes inputting training signals into a first loopback route and a second loopback route, determining a loopback gain and a loopback phase, based on a first training signal passing through the first loopback route and a second training signal passing through the second loopback route, determining a frequency domain compensation filter, based on the loopback gain and the loopback phase, determining an FIR filter and a DC offset, based on the frequency domain compensation filter, and compensating for a transmission signal and a reception signal, based on the FIR filter and the DC offset.
Abstract:
Method of operating electronic device including transmitter and receiver in wireless communication system and the electronic device are provided. The method includes acquiring signal passing through intermediate path between transmitter and receiver; estimating phase change in intermediate path, based on the signal and a reception signal predicted by a modeled system; and determining in-phase/quadrature (I/Q) mismatch parameters indicating a mismatch of I components and Q components of the transmitter and the receiver from the phase change. The electronic device includes a transmitter; a receiver; and at least one processor, configured to acquire a signal passing through an intermediate path between the transmitter and the receiver, estimate a phase change in the intermediate path, based on the signal and a reception signal predicted by a modeled system, and determine I/Q mismatch parameters indicating a mismatch of I components and Q components of the transmitter and the receiver from the phase change.
Abstract:
A beam compensation method and a base station are provided for improving system throughput of a wireless communication system. The beam compensation method includes monitoring feedback signals of a plurality of radio paths; detecting an abnormally operating radio path, based on the monitoring; retrieving beam compensation values corresponding to the abnormally operating radio path; and compensating signals on normally operating radio paths with the retrieved beam compensation values.
Abstract:
Provided are an air conditioning device and method. The air conditioning control device includes a ventilation fan, a memory storing at least one instruction, and at least one processor connected to the memory, in which the at least one processor is configured to, by executing the at least one instruction, determine, among a plurality of rooms, a first room from which thermal energy is to be recovered and a second room to which the thermal energy to be recovered is to be supplied, based on at least one of a sensor value of a sensor in a room among the plurality of rooms, a use schedule of at least one room among the plurality of rooms, and a user input, and drive the ventilation fan to exchange thermal energy of the first room and thermal energy of the second room.
Abstract:
The disclosure relates to an RFIC apparatus, and more particularly, to an RFIC circuit having a test circuit, a test apparatus, and a test method thereof. Further, the disclosure relates to a method for estimating or determining a DC gain using a test apparatus and an RF circuit in a DC/AC test stage, and detecting defects of the RF circuit based on the estimated or determined DC gain.
Abstract:
Provided are an interconnect structure and an electronic device including the interconnect structure. The interconnect structure includes a dielectric layer including at least one trench, a conductive wiring filling an inside of the at least one trench, and a cap layer on at least one surface of the conductive wiring. The cap layer includes nanocrystalline graphene. The nanocrystalline includes nano-sized crystals.
Abstract:
Provided are a radio frequency (RF) signal transmission apparatus and a control method of the RF signal transmission apparatus, in which a local oscillator (LO) leakage signal may be suppressed. The RF signal transmission apparatus may perform beamforming to form a beam based on a plurality of RF signals generated in a plurality of transmission chains, measure magnitude of an LO leakage signal of the beam formed by performing beamforming, and generate an LO leakage suppression signal based on the magnitude of the LO leakage signal.