Abstract:
A method for manufacturing one or more optical devices, each comprising a first member and a second member, and a spacer arranged between the first and second members. The method includes manufacturing a spacer wafer including a multitude of the spacers. Manufacturing the spacer wafer includes providing a replication tool having spacer replication sections; bringing the replication tool in contact with a first surface of another wafer; bringing a vacuum sealing chuck into contact with a second surface of the other wafer while the other wafer remains in contact with the replication tool; and injecting a liquid, viscous or plastically deformable material through an inlet of the vacuum sealing chuck so as to substantially fill the spacer replication sections.
Abstract:
The optical device comprises a first substrate (SI) comprising at least one optical structure (1) comprising a main portion (2) and a surrounding portion (3) at least partially surrounding said main portion. The device furthermore comprises non-transparent material (5, 5a, 5b) applied onto said surrounding portion. The opto-electronic module comprises a plurality of these optical devices comprised in said first substrate. The method for manufacturing an optical device comprises the steps of a) providing a first substrate comprising at least one optical structure comprising a main portion and a surrounding portion at least partially surrounding said main portion; and b) applying a non-transparent material onto at least said surrounding portion. Said non-transparent material is present on at least said surrounding portion still in the finished optical device.
Abstract:
Fabricating optical devices can include mounting a plurality of singulated lens systems over a substrate, adjusting a thickness of the substrate below at least some of the lens systems to provide respective focal length corrections for the lens systems, and subsequently separating the substrate into a plurality of optical modules, each of which includes one of the lens systems mounted over a portion of the substrate. Adjusting a thickness of the substrate can include, for example, micro-machining the substrate to form respective holes below at least some of the lens systems or adding one or more layers below at least some of the lens systems so as to correct for variations in the focal lengths of the lens systems.
Abstract:
Camera modules include a lens, a lens stack and/or an array of lenses. One or more of the lenses have a non-circular shape, which in some cases can provide greater flexibility in the dimensions of the module and can result in a very small camera module.
Abstract:
A method for manufacturing one or more optical devices, each comprising a first member and a second member, and a spacer arranged between the first and second members. The method includes manufacturing a spacer wafer including a multitude of the spacers. Manufacturing the spacer wafer includes providing a replication tool having spacer replication sections; bringing the replication tool in contact with a first surface of another wafer; bringing a vacuum sealing chuck into contact with a second surface of the other wafer while the other wafer remains in contact with the replication tool; and injecting a liquid, viscous or plastically deformable material through an inlet of the vacuum sealing chuck so as to substantially fill the spacer replication sections.
Abstract:
Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.
Abstract:
Compact camera module can include auxiliary spacers to facilitate use of dam-and-fill encapsulation techniques. An encapsulant disposed on side edges of the auxiliary spacer can close off a gap between the auxiliary spacer and a support on which an image sensor is mounted so as to substantially seal off an area in which bond wires or other components are located. In some cases, the thickness of a transmissive substrate in the module can be reduced near its periphery to provide more head room for the bond wires, which can result in a smaller overall footprint for the module.
Abstract:
Techniques are described for holding a wafer or wafer sub-stack to facilitate further processing of the wafer of sub-stack. In some implementations, a wafer or wafer sub-stack is held by a vacuum chuck in a manner that can help reduce bending of the wafer or wafer sub-stack.
Abstract:
According to embodiments of the present invention, an apparatus comprising a beam shaping element (lens) is provided. The apparatus comprises a substrate; a beam shaping element; and an elastic intermediate layer disposed between, and in contact with, the substrate and the beam shaping element, wherein the elastic intermediate layer has a Young's Modulus in a range of 2-600 MPa and a Poisson's ratio in a range of 0.2-0.5. Techniques for reducing thermal distortion of lens are described.
Abstract:
The optical device comprises a first substrate comprising at least one optical structure comprising a main portion and a surrounding portion at least partially surrounding said main portion. The device furthermore comprises non-transparent material applied onto said surrounding portion. The opto-electronic module comprises a plurality of these optical devices comprised in said first substrate.The method for manufacturing an optical device comprises the steps of a) providing a first substrate comprising at least one optical structure comprising a main portion and a surrounding portion at least partially surrounding said main portion; and b) applying a non-transparent material onto at least said surrounding portion. Said non-transparent material is present on at least said surrounding portion still in the finished optical device.