Abstract:
A high electron mobility transistor includes a substrate including a first surface and a second surface facing each other and having a via hole passing through the first surface and the second surface, an active layer on the first surface, a cap layer on the active layer and including a gate recess region exposing a portion of the active layer, a source electrode and a drain electrode on one of the cap layer and the active layer, an insulating layer on the source electrode and the drain electrode and having on opening corresponding to the gate recess region to expose the gate recess region, a first field electrode on the insulating layer, a gate electrode electrically connected to the first field electrode on the insulating layer, and a second field electrode on the second surface and contacting the active layer through the via hole.
Abstract:
A field effect transistor is provided. The field effect transistor may include a capping layer on a substrate, a source ohmic electrode and a drain ohmic electrode on the capping layer, a first insulating layer and a second insulating layer stacked on the capping layer to cover the source and drain ohmic electrodes, a Γ-shaped gate electrode including a leg portion and a head portion, the leg portion being connected to the substrate between the source ohmic electrode and the drain ohmic electrode, and the head portion extending from the leg portion to cover a top surface of the second insulating layer, a first planarization layer on the second insulating layer to cover the Γ-shaped gate electrode, and a first electrode on the first planarization layer, the first electrode being connected to the source ohmic electrode or the drain ohmic electrode.
Abstract:
A semiconductor device may include a substrate having a lower via-hole, an epitaxial layer having an opening exposing a top surface of the substrate, a semiconductor chip disposed on the top surface of the substrate and including first, second, and third electrodes, an upper metal layer connected to the first electrode, a supporting substrate disposed on the upper metal layer and having an upper via-hole, an upper pad disposed on the substrate and extending into the upper via-hole, a lower pad connected to the second electrode in the opening, and a lower metal layer covering a bottom surface of the substrate and connected to the lower pad through the lower via-hole.
Abstract:
A semiconductor device may include a substrate having a lower via-hole, an epitaxial layer having an opening exposing a top surface of the substrate, a semiconductor chip disposed on the top surface of the substrate and including first, second, and third electrodes, an upper metal layer connected to the first electrode, a supporting substrate disposed on the upper metal layer and having an upper via-hole, an upper pad disposed on the substrate and extending into the upper via-hole, a lower pad connected to the second electrode in the opening, and a lower metal layer covering a bottom surface of the substrate and connected to the lower pad through the lower via-hole.
Abstract:
Disclosed are a GaN (gallium nitride) compound power semiconductor device and a manufacturing method thereof. The gallium nitride compound power semiconductor device includes: a gallium nitride compound element formed by being grown on a wafer; a contact pad including a source, a drain, and a gate connecting with the gallium nitride compound element; a module substrate to which the nitride gallium compound element is flip-chip bonded; a bonding pad formed on the module substrate; and a bump formed on the bonding pad of the module substrate so that the contact pad and the bonding pad are flip-chip bonded. By this configuration, it is possible to reduce the process costs by forming the bump on the substrate based on the wafer level, rapidly emit the heat generated from an AlGaN HEMT device by forming the sub source contact pad and the sub drain contact pad of the substrate in the active region, and efficiently emit the heat generated from the AlGaN HEMT device by forming a via hole on the substrate and filling the via hole with the conductive metal.
Abstract:
Disclosed is an automatic gain control feedback amplifier that can arbitrarily control a gain even when a difference in input signal is large. The automatic gain control feedback amplifier includes: an amplification circuit unit configured to amplify voltage input from an input terminal and output the amplified voltage to an output terminal; a feedback circuit unit connected between the input terminal and the output terminal and including a feedback resistor unit of which a total resistance value is determined by one or more control signals and a feedback transistor connected to the feedback resistor unit in parallel; and a bias circuit unit configured to supply predetermined bias voltage to the feedback transistor.
Abstract:
Provided are an electronic chip and a method of fabricating the same. The semiconductor chip may include a substrate, an active device integrated on the substrate, a lower interlayered insulating layer covering the resulting structure provided with the active device, a passive device provided on the lower interlayered insulating layer, an upper interlayered insulating layer covering the resulting structure provided with the passive device, and a ground electrode provided on the upper interlayered insulating layer. The upper interlayered insulating layer may be formed of a material, whose dielectric constant may be higher than that of the lower interlayered insulating layer.
Abstract:
A package includes a ground plate, a chip mounting plate disposed at a side of the ground plate and having a top surface lower than a top surface of the ground plate, a chip on the chip mounting plate, a first input/output terminal opposite to the chip mounting plate and disposed at another side of the ground plate, and a second input/output terminal opposite to the ground plate and disposed at a side of the chip mounting plate. The first and second input/output terminals are electrically connected to the chip.