Abstract:
A thin film transistor and a preparation method thereof, an array substrate and a display apparatus are provided. The preparation method includes an operation of forming a low temperature poly silicon active layer; a substrate has a first region and a second region; and the step includes: forming a buffer layer on the first region and the second region of the substrate, the buffer layer having a thickness at a portion corresponding to the first region greater than that at a portion corresponding to the second region; or, forming the buffer layer on the first region of the substrate; forming an amorphous silicon layer on the buffer layer; performing laser crystallization processing on the amorphous silicon layer so as to convert the amorphous silicon layer into a poly silicon layer; and removing the poly silicon layer on the second region, and forming the low temperature poly silicon active layer on the first region.
Abstract:
Pixel unit, array substrate, and display device, and their fabrication methods are provided. The disclosed pixel unit can include: a transistor, including a drain electrode; a pixel electrode, including a first bottom conductive layer in contact with a surface of the drain electrode and a metal layer; and a planarization layer, formed on the transistor and the first bottom conductive layer. The metal layer is electrically connected to the first bottom conductive layer through a via-hole in the planarization layer.
Abstract:
Embodiments of the present invention provides an array substrate. The array substrate includes a display region and a packaging region. The packaging region includes a plurality of functional layers. And the packaging region further includes: a plurality of through holes running through at least one of the plurality of functional layers and configured to allow a packaging adhesive to enter therein; and a groove formed above at least some of the through holes, wherein, projection areas of the at least some of the through holes onto a base substrate of the array substrate are located within a projection area of the groove onto the base substrate. Embodiments of the present invention further provides a display panel and a display apparatus including the abovementioned array substrate, and a method of manufacturing the abovementioned array substrate.
Abstract:
An array substrate, a manufacturing method thereof and a display apparatus are provided. The array substrate includes thin-film transistors (TFTs) and conductive electrodes; the TFT includes a gate electrode, a source electrode, a drain electrode and an active layer; the source electrode and the drain electrode are arranged in the same layer and at two ends of the active layer and at least directly partially contact the upper surface or the lower surface of the active layer; and the conductive electrode is directly disposed on the electrode. With improved layer structures of the array substrate, a plurality of layer structures is formed in one patterning process by stepped photoresist process, so as to reduce the frequency of patterning processes, better ensure the compactness of the array substrate, and guarantee good contact between the layer structures in the array substrate.
Abstract:
The present disclosure provides a method for forming an active layer with a pattern. The method includes forming an amorphous silicon layer and forming a function layer on the amorphous silicon layer. The function layer has a same pattern as the active layer. The method further includes performing a crystallization process for converting the amorphous silicon layer to a poly-silicon layer. The poly-silicon layer has first portions covered by the function layer and second portions not covered by the function layer, and grain sizes of the poly-silicon in the first portions are larger than grain sizes of the poly-silicon in the second portions.
Abstract:
A thin-film transistor (TFT), a manufacturing method thereof, display substrate and a display device are disclosed. The TFT includes: an active layer, gate insulating layer, gate electrode, interlayer dielectric layer, source electrode and a drain electrode disposed on a base substrate in sequence. The source electrode and drain electrode are respectively connected with the active layer via a through hole exposing the active layer; the gate insulating layer at least includes a silicon oxide layer and a silicon nitride layer in a two-layer structure; the interlayer dielectric layer at least includes silicon oxide layers and silicon nitride layers in a four-layer structure; the silicon oxide layers and silicon nitride layers of the gate insulating layer and the interlayer dielectric layer are alternately arranged; and the dimension of one side of the through hole away from the base substrate is greater than that of one side close to the base substrate.
Abstract:
The present invention provides a method for manufacturing an array substrate, an array substrate, and a display device. The method for manufacturing an array substrate, including a step of forming a thin film transistor and a storage capacitor on a substrate, the thin film transistor including a gate, a source, and a drain, and the storage capacitor including a first pole plate and a second pole plate, wherein, arranging the source, the drain, and the first pole plate in a single layer through implanting dopant ions into an amorphous silicon layer formed on the substrate by one ion-implantation process, and through crystallizing an amorphous silicon material forming the amorphous silicon layer and activating the dopant ions by a laser irradiation process. Accordingly, process steps are simplified and a process cost is reduced greatly, and the performances of the array substrate and the display device are increased.
Abstract:
An array substrate, a manufacturing method thereof and a display apparatus are provided. The array substrate includes thin-film transistors (TFTs) and conductive electrodes; the TFT includes a gate electrode, a source electrode, a drain electrode and an active layer; the source electrode and the drain electrode are arranged in the same layer and at two ends of the active layer and at least directly partially contact the upper surface or the lower surface of the active layer; and the conductive electrode is directly disposed on the electrode. With improved layer structures of the array substrate, a plurality of layer structures is formed in one patterning process by stepped photoresist process, so as to reduce the frequency of patterning processes, better ensure the compactness of the array substrate, and guarantee good contact between the layer structures in the array substrate.
Abstract:
The present disclosure provides a low temperature polycrystalline silicon field effect TFT array substrate and a method for producing the same and a display apparatus. The method: using a stepped photo resist process to form a polycrystalline silicon active layer and a lower polar plate of a polycrystalline silicon storage capacitor simultaneously on a substrate in one lithographic process; forming a gate insulation layer on the polycrystalline silicon active layer and the lower polar plate of the polycrystalline silicon storage capacitor; forming a metal layer on the gate insulation layer and etching the metal layer to form a gate electrode and gate lines connected with the gate electrode, a source electrode, a drain electrode and data lines connected with the source electrode and the drain electrode; forming a passivation layer, a photo resist layer and a pixel electrode layer in sequence and patterning the passivation layer, the photo resist layer and the pixel electrode layer to form patterns of an interlayer insulation layer via hole and a pixel electrode in one lithographic process; forming a pixel definition layer on the pixel electrode. The present disclosure may reduce times of lithographic processes for the low temperature polycrystalline silicon field effect TFT array substrate, improve the yield and reduce the costs.
Abstract:
A polysilicon thin film transistor, a manufacturing method thereof, an array substrate involve display technology field, and can repair the boundary defect and the defect state in polysilicon, suppress the hot carrier effect and make the characteristics of TFTs more stable. The polysilicon thin film transistor includes a gate electrode, a source electrode, a drain electrode and an active layer, the active layer comprises at least a channel area, first doped regions, second doped regions and heavily doped regions, and the first doped regions are disposed on two sides of the channel area, the second doped regions are disposed on sides of the first doped regions away from the channel area; the heavily doped regions are disposed on sides of the second doped regions opposed to the first doped regions; and dosage of ions in the heavily doped regions lies between that in the first doped regions and that in the second doped regions.