Abstract:
A method for fabricating a flexible substrate and a flexible substrate prefabricated component are disclosed, the flexible substrate comprises an electronic device and a flexible layer provided with the electronic device. The fabrication method comprises: disposing a single-sided adhesive layer at a central portion of a surface of a support substrate, an adhesive side of the single-sided adhesive layer being in contact with the support substrate; disposing a double-sided adhesive layer at a peripheral region of the support substrate; disposing the flexible layer on surfaces of the single-sided adhesive layer and the double-sided adhesive layer, the flexible layer being bonded to the double-sided adhesive layer; disposing the electronic device in a region of a surface of the flexible layer corresponding to the single-sided adhesive layer; cutting the flexible layer along a boundary of the electronic device and removing the flexible layer from the single-sided adhesive layer.
Abstract:
Embodiments of the present invention provide a thin film transistor, method for fabricating the thin film transistor and display apparatus. The method includes steps of: forming an active layer pattern which has a mobility greater than a predetermined threshold from an active layer material; and performing ion implantation on the active layer pattern. The energy of a compound bond formed from the implanted ions is greater than that of a compound bond formed from ions in the active layer material, thereby reducing the chance of vacancy formation and reducing the carrier concentration. Therefore, the mobility of the active layer surface is reduced, the leakage current is reduced, the threshold voltage is adjusted to shift toward positive direction and performance of the thin film transistor is improved.
Abstract:
The present disclosure provides a method for producing a thin film transistor. The method includes the steps of: forming a protective layer on an active layer of the thin film transistor and patterning the protective layer along with the active layer when the active layer is deposited; depositing a source and drain electrode layer and patterning it by a dry etching to form a source electrode and a drain electrode; and etching or passivating the protective layer located in a back channel region of the source electrode and the drain electrode. In addition, the present disclosure also discloses a thin film transistor produced by the above method, and an array substrate.
Abstract:
A holographic display panel comprises a plurality of display units, each display unit comprises at least two adjacent pixels, each pixel comprises: a plurality of sub-pixels; and a plurality of phase plates. Diffractive angles of light coming out of the phase plates corresponding to the sub-pixels in a same pixel are the same, a diffractive angle of first light coming out of the phase plates corresponding to a first pixel in one of the display units is different from a diffractive angle of second light coming out of the phase plates corresponding to a second pixel that is different from the first pixel but in the same display unit, and a reverse extension line of the first light and a reverse extension line of the second light intersect at an image plane position.
Abstract:
A micro device transferring apparatus and a micro device transferring method are provided. The micro device transferring apparatus for moving a micro device fixed on an original substrate to a target substrate includes: a stripper on a side of the original substrate away from the micro device, configured to strip the micro device off the original substrate, and an optical tweezer configured to tweeze the micro device from a side of the original substrate provided with the micro device, wherein an accommodating space for accommodating the micro device and the original substrate is between the stripper and the optical tweezer.
Abstract:
A reflective holographic display apparatus and a display method thereof are provided. The reflective holographic display apparatus includes a front light source module, a display panel and a phase plate. The front light source module is configured to provide reference lights; the display panel is configured to adjust amplitude information of the reference lights, wherein the display panel includes a reflective layer and the front light source module is located at a light exit side of the display panel; and the phase plate is configured to adjust phase information of the reference lights and located at a light exit side of the reflective layer.
Abstract:
Disclosed are an electronic device and the manufacturing method thereof, a manufacturing method of a thin film transistor, and an array substrate and manufacturing method thereof. The manufacturing method of an electronic device includes: forming a metallic structure on a base substrate; forming an oxygen-free insulating layer on the metallic structure and the base substrate; and forming an insulating protective layer on the oxygen-free insulating layer. The manufacturing method of the electronic device protects a metallic structure by forming an oxygen-free insulating layer, not containing oxygen elements, on the metallic structure, and hence prevents the metallic structure from being oxidized.
Abstract:
A holographic display panel comprises a plurality of display units, each display unit comprises at least two adjacent pixels, each pixel comprises: a plurality of sub-pixels; and a plurality of phase plates. Diffractive angles of light coming out of the phase plates corresponding to the sub-pixels in a same pixel are the same, a diffractive angle of first light coming out of the phase plates corresponding to a first pixel in one of the display units is different from a diffractive angle of second light coming out of the phase plates corresponding to a second pixel that is different from the first pixel but in the same display unit, and a reverse extension line of the first light and a reverse extension line of the second light intersect at an image plane position.
Abstract:
The present invention discloses an OLED array substrate and a manufacturing method thereof, a display apparatus. The OLED array substrate includes a TFT and an OLED. The method includes: forming an oxide semiconductor layer by a film forming process, and performing one patterning process on the oxide semiconductor layer to form an active layer of the TFT and a first electrode of the OLED; sequentially forming a first insulating layer and a second insulating layer on the active layer and the first electrode of the OLED, the first insulating layer being a lyophilic layer, and the second insulating layer being a lyophobic layer; forming an accommodation cavity exposing the first electrode by performing a patterning process on the first and second insulating layers; and injecting, into the accommodation cavity, and drying a solution containing an organic light emitting material to form an organic light emitting material layer.
Abstract:
The embodiments of the present invention provides an oxide TFT, an array substrate and a display device, an oxide channel layer of the oxide TFT comprises a front channel oxide layer and a back channel oxide layer, a conduction band bottom of the back channel oxide layer being higher than a conduction band bottom of the front channel oxide layer, and a band gap of the back channel oxide layer being larger than a band gap of the front channel oxide layer. In the oxide TFT, the array substrate and the display device provided in the present invention, it is possible to accumulate a large number of electrons through the potential difference formed between oxide channel layers of a multilayer structure so as to increase the carrier concentration in the oxide channel layers to achieve the purpose of improving TFT mobility without damaging TFT stability.