摘要:
The present invention provides a thin film head having a magnetoresistance effect element which includes at least two magnetic films, a nonmagnetic film sandwiched between the magnetic films, and leads connected to the magnetoresistance effect element wherein the width of one of the magnetic films, which essentially responds to a signal magnetic field, is not more than a distance between leads. The present invention provides a thin film head having a magnetoresistance effect element which includes at least two magnetic films and a nonmagnetic film sandwiched between the magnetic films, which makes use of a change in magnetic resistance caused by spin-dependent scattering, wherein at least a portion of one magnetic films, which essentially respond to a signal magnetic field extends in a direction same as that of the signal magnetic field.
摘要:
The present invention provides an exchange coupling film having a stacked-film-structure consisting of a ferromagnetic film made of at least one material of Fe, Co and Ni, and an antiferromagnetic film, wherein the exchange coupling film made of a ferromagnetic material to which an element is added, is provided at the interface between the ferromagnetic film and the antiferromagnetic film so as to improve the lattice matching, which results in the enhancement of the exchange coupling force, and a magnetoresistance effect element including such an exchange coupling film as described above, and an electrode for supplying a current to the ferromagnetic film which constitutes the exchange coupling film.
摘要:
A magnetoresistive head including a first magnetoresistive element, a second magnetoresistive element, and an antiferromagnetic layer interposed between the first and second magnetoresistive elements. The antiferromagnetic layer may be replaced by two antiferromagnetic sub layers which are formed on the outer sides of the first and second magnetoresistive elements, respectively.
摘要:
It is an object of the present invention to provide a magnetoresistance effect element which has a film with a spin valve structure or an artificial lattice film having good soft magnetic characteristics, and which can be applied to a high-sensitivity magnetic head. The present invention provides a magnetoresistance effect element including a stacked film formed on a substrate by sequentially stacking a ferromagnetic film containing as its main constituents at least one elements selected from the group consisting of Co, Fe, and Ni, a nonmagnetic film, and the ferromagnetic film, wherein the two ferromagnetic films are not coupled with each other, and the closest packed plane of each ferromagnetic film is oriented in a direction perpendicular to the film surface.
摘要:
It is an object of the present invention to provide a magnetoresistance effect element which has a film with a spin valve structure or an artificial lattice film having good soft magnetic characteristics, and which can be applied to a high-sensitivity magnetic head. The present invention provides a magnetoresistance effect element including a stacked film formed on a substrate by sequentially stacking a ferromagnetic film containing as its main constituents at least one elements selected from the group consisting of Co, Fe, and Ni, a nonmagnetic film, and the ferromagnetic film, wherein the two ferromagnetic films are not coupled with each other, and the closest packed plane of each ferromagnetic film is oriented in a direction perpendicular to the film surface.
摘要:
According to one embodiment, a magnetic element includes first and second conductive layers, an intermediate interconnection, and first and second stacked units. The intermediate interconnection is provided between the conductive layers. The first stacked unit is provided between the first conductive layer and the interconnection, and includes first and second ferromagnetic layer and a first nonmagnetic layer provided between the first and second ferromagnetic layers. The second stacked unit is provided between the second conductive layer and the interconnection, and includes third and fourth ferromagnetic layers and a second nonmagnetic layer provided between the third and fourth ferromagnetic layers. A magnetization direction of the second ferromagnetic layer is determined by causing a spin-polarized electron and a magnetic field to act on the second ferromagnetic layer.
摘要:
According to one embodiment, a magnetic recording element includes a stacked body. The stacked body includes a first and a second stacked unit. The first stacked unit includes first and second ferromagnetic layers and a first nonmagnetic layer. The first nonmagnetic layer is provided between the first and second ferromagnetic layers. The second stacked unit is stacked with the first stacked unit and includes third and fourth ferromagnetic layers and a second nonmagnetic layer. The fourth ferromagnetic layer is stacked with the third ferromagnetic layer. The second nonmagnetic layer is provided between the third and fourth ferromagnetic layers. An outer edge of the fourth ferromagnetic layer includes a portion outside an outer edge of the first stacked unit in a plane. A magnetization direction of the second ferromagnetic layer is determined by causing a spin-polarized electron and a rotating magnetic field to act on the second ferromagnetic layer.
摘要:
A magnetic memory according to an embodiment includes: at least one memory cell comprising a magnetoresistive element as a memory element, and first and second electrodes that energize the magnetoresistive element. The magnetoresistive element includes: a first magnetic layer having a variable magnetization direction perpendicular to a film plane; a tunnel barrier layer on the first magnetic layer; and a second magnetic layer on the tunnel barrier layer, and having a fixed magnetization direction perpendicular to the film plane. The first magnetic layer including: a first region; and a second region outside the first region so as to surround the first region, and having a smaller perpendicular magnetic anisotropy energy than that of the first region. The second magnetic layer including: a third region; and a fourth region outside the third region, and having a smaller perpendicular magnetic anisotropy energy than that of the third region.
摘要:
A method of manufacturing a magnetoresistance effect element includes forming an insulating layer on a first ferromagnetic layer, forming an aperture reaching the first ferromagnetic layer by thrusting a needle from the top surface of the insulating layer, and depositing a ferromagnetic material to form a second ferromagnetic layer overlying the insulating layer which buries the aperture. The aperture can have an opening width not larger than 20 nm. A current flowing between the first ferromagnetic layer and the needle can be monitored, and thrusting of the needle an be interrupted when the current reaches a predetermined value.
摘要:
A magnetoresistance effect element includes a first ferromagnetic layer (1), insulating layer (3) overlying the first ferromagnetic layer, and second ferromagnetic layer (2) overlying the insulating layer. The insulating layer has formed a through hole (A) having an opening width not larger than 20 nm, and the first and second ferromagnetic layers are connected to each other via the through hole.