Abstract:
A method for fabricating an NMOS transistor is disclosed. First, a substrate having a gate structure thereon is provided. A carbon implantation process is performed thereafter by implanting carbon atoms into the substrate for forming a silicon carbide region in the substrate. Subsequently, a source/drain region is formed surrounding the gate structure. By conducting a carbon implantation process into the substrate and a corresponding amorphorized implantation process before or after the carbon implantation process is completed, the present invention eliminates the need of forming a recess for accommodating an epitaxial layer composed of silicon carbide while facilitates the formation of silicon carbide from the combination of both implantation processes.
Abstract:
A method for fabricating a metal-oxide semiconductor transistor is disclosed. First, a semiconductor substrate having a gate structure thereon is provided, and a spacer is formed around the gate structure. An ion implantation process is performed to implant a molecular cluster containing carbon, boron, and hydrogen into the semiconductor substrate at two sides of the spacer for forming a doped region. The molecular weight of the molecular cluster is preferably greater than 100. Thereafter, a millisecond annealing process is performed to activate the molecular cluster within the doped region.
Abstract:
A method for fabricating strained-silicon transistors is disclosed. First, a semiconductor substrate is provided and a gate structure and a spacer surrounding the gate structure are disposed on the semiconductor substrate. A source/drain region is then formed in the semiconductor substrate around the spacer, and a first rapid thermal annealing process is performed to activate the dopants within the source/drain region. An etching process is performed to form a recess around the gate structure and a selective epitaxial growth process is performed to form an epitaxial layer in the recess. A second rapid thermal annealing process is performed to redefine the distribution of the dopants within the source/drain region and repair the damaged bonds of the dopants.
Abstract:
A method for fabricating a metal-oxide semiconductor transistor is disclosed. First, a semiconductor substrate having a gate structure thereon is provided, and a spacer is formed around the gate structure. An ion implantation process is performed to implant a molecular cluster containing boron into the semiconductor substrate surrounding the spacer for forming a source/drain region. The weight ratio of each boron atom within the molecular cluster is preferably less than 10%. Thereafter, a millisecond annealing process is performed to activate the molecular cluster within the source/drain region.
Abstract:
A salicide process contains providing a silicon substrate that comprises at least a predetermined salicide region, performing a cluster ion implantation process to form an amorphized layer in the predetermined salicide region of the silicon substrate near, forming a metal layer on the surface of the amorphized layer, and reacting the metal layer with the amorphized layer to form a silicide layer on the surface of the silicon substrate.
Abstract:
A method for fabricating a metal-oxide semiconductor transistor is disclosed. The method includes the steps of: providing a semiconductor substrate; forming a gate structure on the semiconductor substrate; and performing a first ion implantation process to implant a first molecular cluster having carbon, boron, and hydrogen into the semiconductor substrate at two sides of the gate structure for forming a doped region, wherein the molecular weight of the first molecular cluster is greater than 100.
Abstract:
A method of forming a MOS transistor, in which, a co-implantation is performed to implant a carbon co-implant into a source region and a drain region or a halo implanted region to effectively prevent dopants from over diffusion in the source region and the drain region or the halo implanted region, for obtaining a good junction profile and improving short channel effect, and the carbon co-implant is from a precursor comprising CO or CO2.
Abstract:
A method of forming a MOS transistor, in which a co-implantation is performed to implant an implant into a source region and a drain region or a halo implanted region to effectively prevent dopants from over diffusion in the source region and the drain region or the halo implanted region, for obtaining a good junction profile and improving short channel effect. The implant comprises carbon, a hydrocarbon, or a derivative of the hydrocarbon, such as one selected from a group consisting of CO, CO2, CxHy+, and (CxHy)n+, wherein x is a number of 1 to 10, y is a number of 4 to 20, and n is a number of to 1000.
Abstract translation:一种形成MOS晶体管的方法,其中执行共注入以将注入植入源区域和漏区域或晕圈注入区域中,以有效地防止掺杂剂在源区和漏区中的过度扩散或 用于获得良好的接合曲线并改善短沟道效应。 植入物包括碳,烃或烃的衍生物,例如选自CO,CO 2 CO 2,C x H y < / SUB>< SUP> +< / SUP>和(C< x< H> 其中,x为1〜10的数,y为4〜20的数,n为1000的数。
Abstract:
A method of forming a MOS transistor, in which a co-implantation is performed to implant an implant into a source region and a drain region or a halo implanted region to effectively prevent dopants from over diffusion in the source region and the drain region or the halo implanted region, for obtaining a good junction profile and improving short channel effect. The implant comprises carbon, a hydrocarbon, or a derivative of the hydrocarbon, such as one selected from a group consisting of C, CxHy+, and (CxHy)n+, wherein x is a number of 1 to 10, y is a number of 4 to 20, and n is a number of 1 to 1000.
Abstract translation:一种形成MOS晶体管的方法,其中执行共注入以将注入植入源区域和漏区域或晕圈注入区域中,以有效地防止掺杂剂在源区和漏区中的过度扩散或 用于获得良好的接合曲线并改善短沟道效应。 植入物包括碳,烃或烃的衍生物,例如选自C,C H,H,O,O, SUP>和(C x H x H y)其中x是1至10的数 y为4〜20的数,n为1〜1000的数。