Abstract:
A method of manufacturing graphene, including forming a metal catalytic layer on a substrate (Step a), providing a cover member on the metal catalytic layer of Step a (Step b), and growing graphene on the metal catalytic layer of Step b by performing chemical vapor deposition (Step c), whereby the size of the micro-scale grain boundary on the surface of the metal catalyst can be reduced by simultaneously promoting the aggregation of metal catalytic molecules in a chemical vapor deposition device and preventing the evaporation of the metal catalyst due to the effect of the cover member, ultimately improving the quality of synthesized graphene, including the transparency thereof. Also, a graphene sheet can be grown under various concentrations of carbon source gas, and efficient mass production thereof is possible in a chemical vapor deposition device having a confined space.
Abstract:
Disclosed is a graphene laminate including a first graphene layer, containing an electron-donating functional group, and a second graphene layer, disposed on the first graphene layer and configured to include graphene, wherein the second graphene layer is n-doped with the first graphene layer. Thereby, graphene is doped with amino-group-modified graphene, thus preventing the transparency of graphene from decreasing, and the extent of doping of graphene can be adjusted, and the doping effect can last a long time even without any protective layer.
Abstract:
Disclosed herein is a laminate comprising: a substrate; an organic surface modifying layer disposed on the substrate; and a porous organic semiconductor layer disposed on the surface modifying layer. Onto the substrate, introduction of the organic surface modifying layer having a low surface energy, and optionally the organic intermediate layer having a low glass transition temperature controls the self assembly of the organic semiconductor layer, allowing the porous organic semiconductor layer to have high crystallinity and large crystal grains. Also, provided is a highly efficient chemical sensor comprising the laminate.
Abstract:
Disclosed is a method of manufacturing an organic semiconductor thin film, including preparing semiconductor ink containing a solvent, a low-molecular-weight organic semiconductor and a high-molecular-weight organic semiconductor and forming an organic semiconductor thin film vertically phase-separated by applying the semiconductor ink on a substrate through a bar-coating process using a bar. In the bar-coating process of the invention, the semiconductor ink blend is used, and the gap between the substrate and the bar is adjusted, thus controlling vertical phase separation. Also, the speed of the bar, the gap of which is adjusted, is regulated, thus controlling crystal growth, whereby the uniformity of the thin film is improved and thus a high-quality organic semiconductor crystalline thin film having a large area can be manufactured in a continuous process. Also, a flexible organic semiconductor transistor, having high stability and high charge mobility, can be provided using the organic semiconductor thin film.
Abstract:
Disclosed is a method of manufacturing multilayer graphene, including (a) contacting of a metal substrate with a nonmetal element, (b) reduction through heat treatment, and (c) chemical vapor deposition of a graphene precursor on the metal substrate containing the nonmetal element dissolved therein, thereby manufacturing multilayer graphene that is doped with the nonmetal element on the metal substrate. In the multilayer graphene thus manufactured, the number of graphene layers and the work function are simultaneously adjusted by controlling the concentration of doped nonmetal element in a thickness direction of graphene through interactions related to the reduction of the nonmetal element dissolved in a copper catalyst and the growth of graphene, and moreover, the stacking structure of graphene is maintained and the optoelectronic properties of multilayer graphene can be controlled by simultaneously regulating graphene growth and doping during the synthesis procedure without additional processing.
Abstract:
Disclosed is a nanopatch graphene composite, which includes graphene including a defect and a nanopatch positioned on the defect, and is configured such that a nanopatch is formed through a self-assembling process on the surface of graphene, thus improving the mechanical properties and durability of the graphene composite. Also, a flexible organic transistor, including the nanopatch graphene composite of the invention, is transparent and has high mechanical durability, thus exhibiting device stability, and the molecular alignment of the organic semiconductor layer growing on the nanopatch graphene composite is induced so as to become favorable for charge injection, thereby increasing the performance of the device.
Abstract:
Disclosed is a method of synthesizing graphene, wherein a Cu—Ni thin film laminate including a copper thin film and a nickel thin film formed thereon is placed in a chemical vapor depositor, brought into contact with a graphene precursor and subjected to chemical vapor deposition (CVD), thus synthesizing thickness-controlled graphene on the copper thin film, whereby the thickness of multilayer graphene can be easily and reproducibly controlled by adjusting only nickel thickness and CVD time, and a process window for obtaining reproducible results can be widened due to self-limiting properties whereby the maximum thickness of graphene is obtained after a certain synthesis time due to the thickness-controlled nickel thin film. Also, carbon atoms absorbed to the nickel thin film reach the copper thin film opposite thereto through internal diffusion of the metal laminate to thus grow graphene via surface-mediated reaction thereon, thereby improving the uniformity of synthesized graphene.
Abstract:
Disclosed is a flexible substrate laminate including a flexible substrate and a base member configured to reduce strain of the flexible substrate on one surface of the flexible substrate. The flexible substrate laminate includes the base member for reducing surface strain to thus decrease the surface shear stress and surface strain thereof, thereby minimizing deterioration in the performance of a device. When the flexible substrate laminate is applied to various electronic devices, the electronic devices can exhibit improved bending resistance while the performance thereof is prevented from decreasing even after bending.
Abstract:
Disclosed are graphene and a method of manufacturing the same. The method of manufacturing graphene includes forming a metal catalytic layer on a substrate (Step a), providing a cover member on the metal catalytic layer of Step a (Step b), and growing graphene on the metal catalytic layer of Step b by performing chemical vapor deposition (Step c), whereby the size of the micro-scale grain boundary on the surface of the metal catalyst can be reduced by simultaneously promoting the aggregation of metal catalytic molecules in a chemical vapor deposition device and preventing the evaporation of the metal catalyst due to the effect of the cover member, ultimately improving the quality of synthesized graphene, including the transparency thereof. Also, a graphene sheet can be grown under various concentrations of carbon source gas, and efficient mass production thereof is possible in a chemical vapor deposition device having a confined space.