Abstract:
A parallel radial mirror analyzer (PRMA) (700) for facilitating rotationally symmetric detection of charged particles caused by a charged beam incident on a specimen is disclosed. The PRMA comprises a zero-volt equipotential grid (728), and a plurality of electrodes (702, 704, 706, 708, 710, 712, 714, 716, 718, 720, 722) electrically configured to generate corresponding electrostatic fields for deflecting the charged particles in accordance with respective energy levels of the charged particles to exit through the grid (728) to form corresponding second-order focal points on a detector (206). The detector (206) is disposed external to the corresponding electrostatic fields. A related method is also disclosed.
Abstract:
Provided is a charged particle beam device to improve energy solution of its energy filter. In one embodiment, a charged particle beam device includes a deflector to deflect charged particles emitted from a sample to an energy filter, and a change in brightness value with the change of voltage applied to the energy filter is found for each of a plurality of deflection conditions for the deflector, and a deflection condition such that a change in the brightness value satisfies a predetermined condition is set as the deflection condition for the deflector.
Abstract:
A device for mass selective determination of at least one ion or of a plurality of ions is used, for example, in a measuring apparatus having an ion trap. The ion trap has a ring electrode having a first opening. A first electrode is arranged at the first opening. Furthermore, an amplifier for providing a radio-frequency storage signal for the ion trap and a first transformer are provided, said first transformer being connected to the amplifier and the first electrode in such a way that the radio-frequency storage signal is coupled into the first electrode via the first transformer.
Abstract:
A ion source comprises: a chamber (45), an injection to inject matter into the chamber, wherein said matter comprises at least a first species, a tip with an apex located in the chamber, wherein the apex has a surface made of a metallic second species, a generator to generate ions of said species, and a regulation system adapted to set operative conditions of the chamber to alternatively generate ions from the gaseous first species, and ions from the non-gaseous metallic second species.
Abstract:
Applicants have found that the asymmetrical energy distribution of ions from an ion source allow chromatic aberration to be reduced by filtering ions in the low energy beam tail without significantly reducing processing time. A preferred embodiment includes within an ion beam column a filter that removes the low energy ions from the beam.
Abstract:
The present invention relates to an analyzing system with improved detection scheme and a charged particle beam device comprising the same. The analyzing system for analyzing a beam of charged particles has a divider to divide the beam of charged particles according to their energies into a low energy beam and a high energy beam; a front detector for detecting the high energy beam; and at least one reverse detector for detecting the low energy beam. The divider is positioned between the front detector and the at least one reverse detector and the front detector and/or the at least one reverse detector are segmented.
Abstract:
A method for filtering ions having a selected mass-to-charge ratio is set forth. In accordance with the method, one or more ions are injected into ion inlets of first and second ion selection chambers in a generally concurrent manner. The first and second ion selection chambers each have a corresponding ion outlet. The first ion selection chamber has a first plurality of electrodes disposed between the respective ion inlet and ion outlet and the said second ion selection chamber has a second plurality of electrodes disposed between its respective ion inlet and ion outlet. One or more RF signals are applied to the first and second plurality of electrodes to generate a rotating electric field respectively in each of the first and second ion selection chambers. Ions exiting the ion outlets of the first and second ion selection chambers, for example, to generate a mass spectrum for the injected ions.
Abstract:
An invention providing a scanning electron microscope composed of a monochromator capable of high resolution, monochromatizing the energy and reducing chromatic aberrations without significantly lowering the electrical current strength of the primary electron beam. A scanning electron microscope is installed with a pair of sectorial magnetic and electrical fields having opposite deflection directions to focus the electron beam and then limit the energy width by means of slits, and another pair of sectorial magnetic and electrical fields of the same shape is installed at a position forming a symmetrical mirror versus the surface containing the slits. This structure acts to cancel out energy dispersion at the object point and symmetrical mirror positions, and by spatially contracting the point-converged spot beam with a converging lens system, improves the image resolution of the scanning electron microscope.
Abstract:
An imaging energy filter for deflecting electrons and other charged particles filters an object formed by these particles at the filter inlet by means of an energetic selection of charged particles in the region of a dispersion screen. The filter includes two concentric and spherical electrodes, which produce an electrostatic field that deflects the charged particles at an angle α that is greater than π and less than 2π. The dispersion screen, operating as a deflecting element that generates a deflection field, is disposed at an intersection point of the inlet axis and the outlet axis and in a plane of symmetry of the angle α, wherein the plane of symmetry simultaneously is an electro-optical plane. The deflection field generated by the deflecting element deflects the charged particles at an angle π-α/2, leading to a total deflection angle of 2π and co-linearity of the inlet axis and outlet axis.
Abstract:
A doping method capable of controlling a dose amount in response to a change the ratio in ion species during a doping process, a control system for controlling a doping amount, and a doping apparatus having a control system are provided. An ion current value of a specific ion in an ion beam is measured. There is an ion detector that measures an ion current value of a specific ion in an ion beam and enters the obtained monitor signal into a control means. Set data for setting a predetermined dose amount is entered into the control means, convert data for obtaining an actual dose amount from the monitor signal is entered into the control means by a memory means. The control means performs data processing on the basis of the input monitor signal and the convert data, a control signal for obtaining the predetermined dose amount is entered from the control means to the dose amount control system to dope the controlled ion beam into the target material.