Abstract:
A printed circuit board includes an electrically conductive layer and a dielectric layer including a polymer. The polymer includes at least one of a carbon layer structure and a carbon-like layer structure.
Abstract:
A method of forming an electrically conductive composite is disclosed that includes the steps of providing a first dielectric material and a second conductive material that is substantially dispersed within the first dielectric material; and applying an electric field through at least a portion of the combined first dielectric material and second conductive material such that the second conductive material undergoes electrophoresis and forms at least one electrically conductive path through the electrically conductive composite along the direction of the applied electric field.
Abstract:
A composite material for the realization of a component or a structural part, in particular for installation on-board a vehicle, adapted to integrate electrical devices and connections, includes a non-conductive polymeric matrix; a dispersed phase including at least one promoter of carbonization adapted to form carbonaceous conductive structures; and a reinforcing-fiber filler adapted to direct the distribution and orientation of the dispersed phase in the polymeric matrix.
Abstract:
A method is used to provide an electrically-conductive polyaniline pattern by providing a uniform layer of a photocurable composition on a substrate. The photocurable composition comprises a water-soluble reactive polymer comprising (a) greater than 40 mol % of recurring units comprising sulfonic acid or sulfonate groups, and (b) at least 5 mol % of recurring units comprising a pendant group capable of crosslinking via [2+2] photocycloaddition. The photocurable composition is exposed to cause crosslinking via [2+2] photocycloaddition of the (b) recurring units, thereby forming a crosslinked polymer. Any remaining water-soluble reactive polymer is removed. The crosslinked polymer is contacted with an aniline reactive composition having aniline monomer and up to 0.5 molar of an aniline oxidizing agent, thereby forming an electrically-conductive polyaniline disposed either within, on top of, or both within and on top of, the crosslinked polymer.
Abstract:
A flake-less molecular ink suitable for printing (e.g. screen printing) conductive traces on a substrate has 30-60 wt % of a C8-C12 silver carboxylate or 5-75 wt % of bis(2-ethyl-1-hexylamine) copper (II) formate, bis(octylamine) copper (II) formate or tris(octylamine) copper (II) formate, 0.1-10 wt % of a polymeric binder (e.g. ethyl cellulose) and balance of at least one organic solvent. Conductive traces formed with the molecular ink are thinner, have lower resistivity, have greater adhesion to a substrate than metal flake inks, have better print resolution and are up to 8 times less rough than metal flake inks. In addition, the shear force required to remove light emitting diodes bonded to the traces using Loctite 3880 is at least 1.3 times stronger than for commercially available flake-based inks.
Abstract:
A method of manufacturing an electric wiring layer including an electric wiring includes obtaining a pressed powder molded layer by pressurizing a powder including a metal particle with an insulating layer, the metal particle being constituted by a metal particle having conductivity and a surface insulating layer which is located on a surface of the metal particle and which mainly contains a glass material; and irradiating the pressed powder molded layer with energy rays and forming the electric wiring in an irradiation region.
Abstract:
An electronic module and a method for the production thereof is disclosed. In one embodiment, the electronic module has a plurality of components arranged on a wiring block. The wiring block has a plurality of outer sides and has in its volume lines interconnecting contact pads on the outer sides. The contact pads are electrically connected to component connections of the components.
Abstract:
A wooden casing is provided with a conductive pattern formed on the surface of the wooden material by carbonizing the surface thereof. A method for processing a surface of a wooden material, is provided with the steps of carbonizing the surface of the wooden material, and compressing the wooden material.
Abstract:
An interconnect for an electrical component. Generally, interconnects of the invention include a substrate, a pair of leads supported on the substrate, and a shunt extending between the leads. In one aspect of the present invention, the shunt comprises an eroded carbonized area of a surface of a carbonizable material.
Abstract:
The present invention provides an interconnect useful for the prevention of ESD/EOS damage to electrical components. The present invention provides for interconnects that include at least two conductive wires or leads engaged on at least one surface by a carbonizable and ablatable material. The conductive wires may each include a branched dead end lead portion interleaved with the branched dead end lead portion of the other. Alternatively, the conductive wires may extend in close proximity to each other in a curved or sinuous or serpentine or backtracking pattern. An interconnect in accord with the present invention may include a substrate substantially supporting the conductive wires except at predetermined locations or proposed stint sites wherein there is at least one through hole in the substrate.