Abstract:
An in situ optical specimen holder is disclosed which allows imaging and analysis during dynamic experimentation. This holder assembly includes a set of focusing and reflection optics along with an environmental cell. Electromagnetic radiation can be used to optically excite the specimen in the presence or absence of fluid and the source of such radiation may be located within the body of the holder itself. The spot size of the irradiation at the specimen surface can be varied, thus exciting only a specific region on the specimen. The window type cell provides a variable fluid path length ranging from the specimen thickness to 500 μm. The holder has the provision to continuously circulate fluids over the specimen. The pressure within the cell can be regulated by controlling the flow rate of the fluids and the speed of the pumps.
Abstract:
The invention relates to a cathodoluminescence detection system comprising: a collecting optic (112) collecting light radiation (108) from a sample illuminated by a beam of charged particles and reflecting said radiation (108) onto analysis means, said collecting optic (112) being placed in a chamber, called a vacuum chamber, wherein the pressure is below atmospheric pressure; and means (316) for adapting the light radiation, placed downstream of the collecting optic (112) and designed to adapt said light radiation (108) at the inlet of the analysis means. Said system is characterized in that all or part of the adapting means (316) is placed in an environment where the pressure is higher than the pressure in said vacuum chamber.
Abstract:
A method and system for the imaging and localization of fluorescent markers such as fluorescent proteins or quantum dots within biological samples is disclosed. The use of recombinant genetics technology to insert “reporter” genes into many species is well established. In particular, green fluorescent proteins (GFPs) and their genetically-modified variants ranging from blue to yellow, are easily spliced into many genomes at the sites of genes of interest (GoIs), where the GFPs are expressed with no apparent effect on the functioning of the proteins of interest (PoIs) coded for by the GoIs. One goal of biologists is more precise localization of PoIs within cells. The invention is a method and system for enabling more rapid and precise PoI localization using charged particle beam-induced damage to GFPs. Multiple embodiments of systems for implementing the method are presented, along with an image processing method relatively immune to high statistical noise levels.
Abstract:
It is an object of the present invention to provide a specimen observation method, an image processing device, and a charged-particle beam device which are preferable for selecting, based on an image acquired by an optical microscope, an image area that should be acquired in a charged-particle beam device the representative of which is an electron microscope. In the present invention, in order to accomplish the above-described object, there are provided a method and a device for determining the position for detection of charged particles by making the comparison between a stained optical microscope image and an elemental mapping image formed based on X-rays detected by irradiation with the charged-particle beam.
Abstract:
A combined inspection system for inspecting an object disposable in an object plane 19, comprises a particle-optical system, which provides a particle-optical beam path 3, and a light-optical system, which provides a light-optical beam path 5; and a controller 60, wherein the light-optical system comprises at least one light-optical lens 30 arranged in the light-optical beam, which comprises a first lens surface facing the object plane which has two lens surfaces 34, 35 and a through hole 32, wherein the particle-optical system comprises a beam deflection device 23, in order to scan a primary particle beam 15 over a part of the sample plane 19, and wherein the controller is configured to control the beam deflection device 23 in such a manner that a deflected primary particle beam 15 intersects an optical axis 3 of the particle-optical beam path in a plane which is arranged inside the through hole.
Abstract:
An interface, a scanning electron microscope and a method for observing an object that is positioned in a non-vacuum environment. The method includes: generating an electron beam in the vacuum environment; scanning a region of the object with the electron beam while the object is located below an object holder; wherein the scanning comprises allowing the electron beam to pass through an aperture of an aperture array, pass through an ultra thin membrane that seals the aperture, and pass through the object holder; wherein the ultra thin membrane withstands a pressure difference between the vacuum environment and the non-vacuum environment; and detecting particles generated in response to an interaction between the electron beam and the object.
Abstract:
A charged particle beam system, a sample processing method, and a semiconductor inspection system enable an accurate detection of a particle in a film without causing LMIS contamination and allow observation with an electron microscope quickly. A particle 65 causing a defect in a film 66 that has been detected with a separate optical inspection system is detected with an optical microscope 43 based on position information acquired by the separate optical inspection system. A sample 31 is processed with a nonmetal ion beam 22 so as to allow observation of the particle 65 with an electron microscope image or an ion microscope image, or ultimate analysis of the particle 65 with an EDX.
Abstract:
A spectrometer (10) for sample surface analysis by irradiation of the surface by primary particles and a corresponding method of surface analysis spectroscopy. The spectrometer (10) provides sample viewing and secondary charged particle collection substantially normal to the sample surface. A collection chamber (22) comprises a secondary charged particle lens arrangement (20) to focus the emitted particles in a downstream direction along a first normal axis (24) and thereby to define a charged particle optical crossover location (25); and a light-reflecting optical element (50) downstream of the lens arrangement and arranged to receive image light (41) and reflect it away from a second normal axis (42) for providing a viewable image of the surface. The optical element (50) is positioned at, or near to, the crossover location (25) and comprises an opening (52) therethrough, such that the focused particles pass through the opening for downstream spectroscopic analysis substantially without obstruction by the optical element.
Abstract:
A complex type microscopic device includes a slider unit moving a stage, an optical microscope, a scanning electron microscope with an electron axis intersecting with an optical axis of the optical microscope, an optical measurement/observation unit having a magnification between those of the scanning electron microscope and the optical microscope and co-using an objective lens with the optical microscope, and a control unit controlling the entire device, and a display unit having a display screen. During display of a low-magnification optical microscopic image, the control unit controls the display unit to display, on the image, a representation to designate an area to be observed at a magnification of the optical measurement/observation unit, and to display, on the image, another representation to designate an area to be observed at a magnification of the scanning electron microscope during display of a high-magnification optical microscopic image.
Abstract:
An optical microscope slide in a charged particle instrument such as an electron microscope or a focused ion beam instrument. Conventional microscope slides are not fit for use in an electron microscope as they are insulating and would thus charge when viewed in an electron microscope due to the impinging beam of charged particles. However, microscope slides exist that show a coating with a conductive layer of e.g. Indium Tin Oxide (ITO). These microscope slides are normally used for heating the object mounted on the slide by passing a current through the conductive layer. Experiments show that these microscope slides can be used advantageously in a charged particle instrument by connecting the conductive layer to e.g. ground potential, thereby forming a return path for the impinging charged particles and thus avoiding charging. The invention further relates to a charged particle instrument that is further equipped with an optical microscope.