摘要:
A method of processing greensheets for use as microelectronic substrates comprises providing a greensheet having a width, a length and a thickness, bonding to the greensheet, within the greensheet width and length, a frame adapted to constrain movement of the greensheet within the frame, processing the greensheet and bonded frame, and removing the frame from the processed greensheet. The processing of the greensheet and bonded frame may include punching vias in the greensheet, filling the vias in the greensheet with conductive material, patterning the greensheet by applying conductive paste to the vias and greensheet surface, stacking the patterned greensheet and bonded frame with at least one other patterned greensheet and bonded frame, and laminating the greensheets. The frame is preferably removed from the processed greensheet after laminating the greensheets, and before the laminated greensheets are subsequently sintered. The bonding of the frame to the greensheet may be by lamination or by an adhesive, or by other means. Preferably, the frame has a thickness less than the greensheet thickness. The frame preferably has a plurality of members subdividing the greensheet into a plurality of areas, with each area being completely surrounded by frame members. The frame may be applied to one side of the greensheet, and pressed into the greensheet side such that that the frame and greensheet side are substantially coplanar.
摘要:
A ceramic material powder for a translucent ceramic is molded with a binder, and the resulting green compact is embedded in a ceramic powder having the same composition with the ceramic material powder. After removing the binder, the green compact embedded in the ceramic powder is fired in an atmosphere having an oxygen concentration higher than that in the removal procedure of the binder and thereby yields a translucent ceramic represented by Formula I: Banull(SnuZr1-u)xMgyTaznullvOw, Formula II: Ba(ZrxMgyTaz)vOw or Formula III: Banull(SnuZr1-u)xZntMg1-t)yNbznullvOw. The translucent ceramic has a refractive index of 1.9 or more and is paraelectric.
摘要:
The present invention mainly relates to a method for reducing X-Y shrinkage during sintering low temperature ceramic comprising piling a constrain layer on a dielectric layer on a green ceramic body, which is printed with heterogeneous materials for conductors, resistors, capacitors and the like and/or disposed conductors, resistors, capacitors and the like to reduce shrinkage of the dielectric layer and the green ceramic body. The invention is characterized in that the constrain layer comprises windows in positions complying with the heterogeneous materials and/or conductors, resistors, capacitors and the like printed and/or disposed on the dielectric layer and the green ceramic body to make the heterogeneous materials and/or conductors, resistors, capacitors and the like not being covered when piling the constrain layer and the dielectric layers of the green ceramic body.
摘要:
A method of processing greensheets for use as microelectronic substrates comprises providing a greensheet having a width, a length and a thickness, bonding to the greensheet, within the greensheet width and length, a frame adapted to constrain movement of the greensheet within the frame, processing the greensheet and bonded frame, and removing the frame from the processed greensheet. The processing of the greensheet and bonded frame may include punching vias in the greensheet, filling the vias in the greensheet with conductive material, patterning the greensheet by applying conductive paste to the vias and greensheet surface, stacking the patterned greensheet and bonded frame with at least one other patterned greensheet and bonded frame, and laminating the greensheets. The frame is preferably removed from the processed greensheet after laminating the greensheets, and before the laminated greensheets are subsequently sintered. The bonding of the frame to the greensheet may be by lamination or by an adhesive, or by other means. Preferably, the frame has a thickness less than the greensheet thickness. The frame preferably has a plurality of members subdividing the greensheet into a plurality of areas, with each area being completely surrounded by frame members. The frame may be applied to one side of the greensheet, and pressed into the greensheet side such that the frame and greensheet side are substantially coplanar.
摘要:
A multilayered microfluidic device having a substantially monolithic structure is formed by sintering together a plurality of green-sheet layers. The substantially monolithic structure has an inlet port for receiving fluid, an outlet port for releasing fluid, and an interconnection between the inlet port and the outlet port. The substantially monolithic structure may also include a variety of components to enable useful interaction with the fluid, such as electrically conductive pathways, heaters, fluid sensors, fluid motion transducers, and optically transmissive portions. The components are preferably fabricated using thick-film or green-sheet technology and are preferably co-fired with and sintered to the green-sheet layers to become integral with the substantially monolithic structure.
摘要:
A method of processing greensheets for use as microelectronic substrates comprises providing a greensheet having a width, a length and a thickness, bonding to the greensheet, within the greensheet width and length, a frame adapted to constrain movement of the greensheet within the frame, processing the greensheet and bonded frame, and removing the frame from the processed greensheet. The processing of the greensheet and bonded frame may include punching vias in the greensheet, filling the vias in the greensheet with conductive material, patterning the greensheet by applying conductive paste to the vias and greensheet surface, stacking the patterned greensheet and bonded frame with at least one other patterned greensheet and bonded frame, and laminating the greensheets. The frame is preferably removed from the processed greensheet after laminating the greensheets, and before the laminated greensheets are subsequently sintered. The bonding of the frame to the greensheet may be by lamination or by an adhesive, or by other means. Preferably, the frame has a thickness less than the greensheet thickness. The frame preferably has a plurality of members subdividing the greensheet into a plurality of areas, with each area being completely surrounded by frame members. The frame may be applied to one side of the greensheet, and pressed into the greensheet side such that that the frame and greensheet side are substantially coplanar.
摘要:
A micro-gas chromatograph column is formed by texturing a channel into a plurality of green-sheet layers, which are then sintered together to form a substantially monolithic structure. A thick-film paste may be added to the channel textured in the green-sheet layers to provide a porous plug sintered in the micro-gas chromatograph column in the substantially monolithic. A thermal conductivity detector is formed in the substantially monolithic structure by depositing a conductive thick-film paste on the surface of one of the green-sheet layers to define a resistor in an exit channel of the micro-gas chromatograph column.
摘要:
A method of producing a material having a layer of ceramic as a first component, a layer of a metal as a second component and an intermediate layer lying between said layers and including said first and second components in continuous gradient ratios so that the properties of the material may change continuous, including a step of forming said intermediate layer by igniting a powder mixture of metallic and nonmetallic constitutive elements of said ceramic component and said metal component so as to cause a synthetic reaction in the powder mixture.
摘要:
A method for producing a bonded body of ceramic and metal bodies includes stacking a ceramic body, metal body, gap layer capable of preventing oxidation and hindering heat conduction, first intermediate layer and second intermediate layer with the gap layer between the ceramic body and the metal body in the stacking direction. The first intermediate layer is between the ceramic body and gap layer, and the second intermediate layer is between the gap layer and metal body, linear expansion coefficients of the first and second intermediate layers being between those of the ceramic body and the metal body. Diffusion bonding is performed between the ceramic body and the first intermediate layer, and between the metal body and the second intermediate layer simultaneously. The gap layer is then removed from between the first and second intermediate layers. The first and second intermediate layers are then bonded to each other.
摘要:
A method for making an inorganic sheet may include passing a sheet-forming composition including a major amount of inorganic particulate material through at least one pair of indented rollers, thereby forming an inorganic board. The method may further include passing the inorganic board through at least one pair of finishing rollers, thereby forming an inorganic sheet. A method of forming a sintered ceramic sheet may further include drying the ceramic sheet to form a green ceramic sheet, and sintering the green ceramic sheet to form a sintered ceramic sheet. A method of forming a multilayered ceramic composite may further include forming a green laminated product and sintering the green laminated product to form a multilayered ceramic composite.