摘要:
A system and method of reducing chromatographic band broadening within a separation column include passing a mobile phase through a length of a separation column, and generating a spatial thermal gradient external to and along the length of the separation column. The spatial thermal gradient is specifically configured to counteract a particular change in a property of the mobile phase as the mobile phase passes through the separation column. For example, the particular change counteracted may be a change in density or in temperature of the mobile phase. For analytical-scale columns, for example, the spatial thermal gradient may be configured to produce temperatures external to and along the length of the separation column that substantially matches temperatures predicted to form in the mobile phase along the column length as the mobile phase passes through the separation column, thereby substantially preventing formation of a radial thermal gradient in the mobile phase.
摘要:
Analytical-scale separation column assemblies include a tube with a bore packed with a stationary phase through which a mobile phase flows. In one embodiment, thermal elements are disposed remotely from and unattached to the tube. The thermal elements are in thermal communication with an external surface of the tube for producing a spatial thermal gradient outside of and along a length of the tube. In another embodiment, discrete, spatially separated strips of thermally conductive material are disposed on and wrapped around an external surface of the tube. Thermal elements are disposed remotely from the tube. Each thermal element is in thermal communication with one strip of thermally conductive material by a heat-transfer device. The thermal elements produce a spatial thermal gradient outside of and along a tube length by controlling temperature of each strip of thermally conductive material disposed on and wrapped around the external surface of the tube.
摘要:
A system and method of reducing chromatographic band broadening within a separation column include passing a mobile phase through a length of a separation column, and generating a spatial thermal gradient external to and along the length of the separation column. The spatial thermal gradient is specifically configured to counteract a particular change in a property of the mobile phase as the mobile phase passes through the separation column. For example, the particular change counteracted may be a change in density or in temperature of the mobile phase. For analytical-scale columns, for example, the spatial thermal gradient may be configured to produce temperatures external to and along the length of the separation column that substantially matches temperatures predicted to form in the mobile phase along the column length as the mobile phase passes through the separation column, thereby substantially preventing formation of a radial thermal gradient in the mobile phase.
摘要:
A chromatographic device includes a primary channel having a cross-sectional area and characteristic length such that analyte travel within the primary channel is substantially convective. A plurality of secondary channels each having a cross-sectional area and characteristic length such that analyte flow into and out of a secondary channel is substantially diffusive, each of the plurality of secondary channels having an entrance in fluidic communication with the primary channel wherein the entrance intersects the primary channel.
摘要:
Methods for transferring a carbon dioxide based separation procedure from a first chromatographic system to a second one involve identifying an average column pressure for the separation in the first system is identified, determining a measured average column pressure for the separation in the second system, and comparing the measured average column pressure with the identified average column pressures. To more closely match the identified average column pressure, the methods involve: (a) altering a cross-sectional area of a column packed with media in the second system; and/or (b) adding makeup fluid along the length of the column in the second system. Columns with the characteristics used in the methods and second chromatographic systems are disclosed.
摘要:
Methods for focusing analyte peaks in liquid chromatography using a spatial temperature gradient are provided. Also provided are methods for focusing analyte peaks and improving resolution using a trap column upstream of a separation column. Further, methods are provided in which the trap column placed upstream of the separation column is packed with a temperature-sensitive polymer/copolymer, and a spatial temperature gradient is applied along the trap column for obtaining improved retentivity by trap column stationary phase, and overall improved resolution of analyte peaks.
摘要:
The present disclosure relates to methodologies, systems and apparatus for controlling pressure in a CO2-based chromatography system. A first pressure control element is located downstream of a CO2-based chromatography system and is disposed to control pressure within the column. A split restrictor is located downstream of the primary pressure control element and is disposed to divert a portion of the mobile phase flow to a detector. A second pressure control element is located downstream of the split restrictor and is disposed to control pressure at the restrictor. While the first pressure control element executes a pressure-controlled gradient separation, the second pressure control element maintains a constant pressure at the restrictor. During a composition-programmed gradient separation, the second control element maintains a constant pressure at the split restrictor while the first pressure control element maintains a constant average density across the column.
摘要:
In various aspects provided are purification media and containers for dispensing a purified liquid are provided herein where a high surface area-to-volume chemically interactive purification media positioned at the outlet of a container that purifies the liquid as it is dispensed and/or extracted.
摘要:
In a sample extraction system, providing within the system two or more extraction vessel assemblies, each of which receive an extraction vessel containing the sample to be extracted and is pressurized with an extraction solvent. Additionally, providing certain changeable fluid circuits such that the extraction system may provide a sustained delivery of feed solution above or about a threshold concentration.
摘要:
A significant reduction in extra-column band broadening can be achieved by decoupling the injection system from the main solvent flow line. In addition, by decoupling the injection system from the main solvent flow line, additional components (e.g., filters, valves, etc.) can be introduced into the chromatography system without increasing the negative band broadening effects. Systems and methods herein provide not only for such decoupling but also for filtering precipitates from the system. As a result, a larger volume of sample can be injected into the present systems without compromising separation yield. In addition, an increase the column loading per batch, an increase the overall yield of separations, and greater system efficiency (i.e., less time lost for cleaning and maintenance) can be realized.