Abstract:
MOSFET is provided with SiC film. SiC film has a facet on its surface, and the length of one period of the facet is 100 nm or more, and the facet is used as channel. Further, a manufacturing method of MOSFET includes: a step of forming SiC film; a heat treatment step of heat-treating SiC film in a state where Si is supplied on the surface of SiC film; and a step of forming the facet obtained on the surface of SiC film by the heat treatment step into a channel. Thereby, it is possible to sufficiently improve the characteristics.
Abstract:
A semiconductor device includes: a substrate made of silicon carbide and having a main surface having an off angle of not less than −° and not more than +5° relative to a (0-33-8) plane in a direction; a p type layer made of silicon carbide and formed on the main surface of the substrate by means of epitaxial growth; and an oxide film formed in contact with a surface of the p type layer. A maximum value of nitrogen atom concentration is 1×1021 cm−3 or greater in a region within 10 nm from an interface between the p type layer and the oxide film.
Abstract:
A method for manufacturing a silicon carbide substrate includes the steps of: preparing a base substrate made of silicon carbide and a SiC substrate made of single-crystal silicon carbide; forming a Si film made of silicon on a main surface of the base substrate; fabricating a stacked substrate by placing the SiC substrate on and in contact with the Si film; and connecting the base substrate and the SiC substrate to each other by heating the stacked substrate to convert, into silicon carbide, at least a region making contact with the base substrate and a region making contact with the SiC substrate in the Si film.
Abstract:
A SiC substrate includes a first orientation flat parallel to the direction, and a second orientation flat being in a direction intersecting the first orientation flat and being different from the first orientation flat in length. An alternative SiC substrate has a rectangular plane shape, and a main surface of the substrate includes a first side parallel to the direction, a second side in a direction perpendicular to the first side, and a third side connecting the first side to the second side. A length of the third side projected in a direction in which the first side extends is different from a length of the third side projected in a direction in which the second side extends.
Abstract:
A MOSFET which is a semiconductor device capable of achieving a stable reverse breakdown voltage and reduced on-resistance includes a SiC wafer of an n conductivity type, a plurality of p bodies of a p conductivity type formed to include a first main surface of the SiC wafer, and n+ source regions of the n conductivity type formed in regions surrounded by the plurality of p bodies, respectively, when viewed two-dimensionally. Each of the p bodies has a circular shape when viewed two-dimensionally, and each of the n+ source regions is arranged concentrically with each of the p bodies and has a circular shape when viewed two-dimensionally. Each of the plurality of p bodies is arranged to be positioned at a vertex of a regular hexagon when viewed two-dimensionally.
Abstract:
A MOSFET includes: a silicon carbide (SiC) substrate having a main surface having an off angle of not less than 50° and not more than 65° relative to a {0001} plane; a semiconductor layer formed on the main surface of the SiC substrate; and an insulating film formed in contact with a surface of the semiconductor layer. The MOSFET has a sub-threshold slope of not more than 0.4 V/Decade.
Abstract translation:MOSFET包括:碳化硅(SiC)基板,其具有相对于{0001}面具有不小于50°且不大于65°的偏离角的主表面; 形成在所述SiC衬底的主表面上的半导体层; 以及与半导体层的表面接触形成的绝缘膜。 MOSFET的子阈值斜率不超过0.4 V /十年。
Abstract:
On a p− epitaxial layer, an n-type epitaxial layer and a gate region are formed in this order. A gate electrode is electrically connected to the gate region, and a source electrode and a drain electrode are spaced apart from each other with the gate electrode sandwiched therebetween. A control electrode is used for applying to the p− epitaxial layer a voltage that causes a reverse biased state of the p− epitaxial layer and the n-type epitaxial layer in an OFF operation.
Abstract:
A silicon carbide semiconductor device having excellent performance characteristics and a method of manufacturing the same are obtained. A coating film made of Si is formed on an initial growth layer on a 4H—SiC substrate, and an extended terrace surface is formed in a region covered with the coating film. Next, the coating film is removed, and a new growth layer is epitaxially grown on the initial growth layer. A 3C—SiC portion made of 3C—SiC crystals having a polytype stable at a low temperature is grown on the extended terrace surface of the initial growth layer. A channel region of a MOSFET or the like is provided in the 3C—SiC portion having a narrow band gap. As a result, the channel mobility is improved because of a reduction in an interface state, and a silicon carbide semiconductor device having excellent performance characteristics is obtained.
Abstract:
A multilayer semiconductor portion is provided on a semiconductor substrate on side faces of a semiconductor portion. A second conductive type III-V compound semiconductor layer is provided on the semiconductor portion and the multilayer semiconductor portion. The multilayer semiconductor portion has first to fourth semiconductor layers sequentially arranged on the semiconductor substrate. The first semiconductor layer is a first conductive type III-V compound semiconductor layer extending along the side face of the semiconductor portion and a principal surface of the semiconductor substrate. The second semiconductor layer is a second conductive type III-V group compound semiconductor layer extending along the first semiconductor layer. The third semiconductor layer is a first conductive type III-V compound semiconductor layer extending along the second semiconductor layer. The fourth semiconductor layer is a second conductive type III-V compound semiconductor layer provided on the third semiconductor layer.
Abstract:
A substrate is provided with a main surface having an off angle of 5° or smaller relative to a reference plane. The reference plane is a {000-1} plane in the case of hexagonal system and is a {111} plane in the case of cubic system. A silicon carbide layer is epitaxially formed on the main surface of the substrate. The silicon carbide layer is provided with a trench having first and second side walls opposite to each other. Each of the first and second side walls includes a channel region. Further, each of the first and second side walls substantially includes one of a {0-33-8} plane and a {01-1-4} plane in the case of the hexagonal system and substantially includes a {100} plane in the case of the cubic system.