摘要:
On a p− epitaxial layer, an n-type epitaxial layer and a gate region are formed in this order. A gate electrode is electrically connected to the gate region, and a source electrode and a drain electrode are spaced apart from each other with the gate electrode sandwiched therebetween. A control electrode is used for applying to the p− epitaxial layer a voltage that causes a reverse biased state of the p− epitaxial layer and the n-type epitaxial layer in an OFF operation.
摘要:
The invention offers a method of producing a semiconductor device that can suppress the worsening of the property due to surface roughening of a wafer by sufficiently suppressing the surface roughening of the wafer in the heat treatment step and a semiconductor device in which the worsening of the property caused by the surface roughening is suppressed. The method of producing a MOSFET as a semiconductor device is provided with a step of preparing a wafer 3 made of silicon carbide and an activation annealing step that performs activation annealing by heating the wafer 3. In the activation annealing step, the wafer 3 is heated in an atmosphere containing a vapor of silicon carbide generated from the SiC piece 61, which is a generating source other than the wafer 3.
摘要:
A method for manufacturing a silicon carbide substrate achieves reduced manufacturing cost. The method includes the steps of: preparing a base substrate and a SiC substrate; fabricating a stacked substrate by stacking the base substrate and the SiC substrate; fabricating a connected substrate by heating the stacked substrate; transferring a void, formed at a connection interface, in a thickness direction of the connected substrate by heating the connected substrate to cause the base substrate to have a temperature higher than that of the SiC substrate; and removing the void by removing a region including a main surface of the base substrate opposite to the SiC substrate.
摘要:
An IGBT, which is a vertical type IGBT allowing for reduced on-resistance while restraining defects from being produced, includes: a silicon carbide substrate, a drift layer, a well region, an n+ region, an emitter contact electrode, a gate oxide film, a gate electrode, and a collector electrode. The silicon carbide substrate includes: a base layer made of silicon carbide and having p type conductivity; and a SiC layer made of single-crystal silicon carbide and disposed on the base layer. The base layer has a p type impurity concentration exceeding 1×1018 cm−3.
摘要:
A MOSFET, which is a semiconductor device allowing for reduced on-resistance while restraining stacking faults from being produced due to heat treatment in a device manufacturing process, includes: a silicon carbide substrate; an active layer made of single-crystal silicon carbide and disposed on one main surface of the silicon carbide substrate; a source contact electrode disposed on the active layer; and a drain electrode formed on the other main surface of the silicon carbide substrate. The silicon carbide substrate includes: a base layer made of silicon carbide; and a SiC layer made of single-crystal silicon carbide and disposed on the base layer. Further, the base layer has an impurity concentration greater than 2×1019 cm−3, and the SiC layer has an impurity concentration greater than 5×1018 cm−3 and smaller than 2×1019 cm−3.
摘要:
A method for manufacturing a silicon carbide substrate includes the steps of: preparing a base substrate made of silicon carbide and a SiC substrate made of single-crystal silicon carbide; and connecting the base substrate and SiC substrate to each other by forming an intermediate layer, which is made of carbon that is a conductor, between the base substrate and the SiC substrate.
摘要:
The invention offers a method of producing a semiconductor device that can suppress the worsening of the property due to surface roughening of a wafer by sufficiently suppressing the surface roughening of the wafer in the heat treatment step and a semiconductor device in which the worsening of the property caused by the surface roughening is suppressed. The method of producing a MOSFET as a semiconductor device is provided with a step of preparing a wafer 3 made of silicon carbide and an activation annealing step that performs activation annealing by heating the wafer 3. In the activation annealing step, the wafer 3 is heated in an atmosphere containing a vapor of silicon carbide generated from the SiC piece 61, which is a generating source other than the wafer 3.
摘要:
A method for manufacturing a silicon carbide substrate includes the steps of: preparing a base substrate made of silicon carbide and a SiC substrate made of single-crystal silicon carbide; forming a Si film made of silicon on a main surface of the base substrate; fabricating a stacked substrate by placing the SiC substrate on and in contact with the Si film; and connecting the base substrate and the SiC substrate to each other by heating the stacked substrate to convert, into silicon carbide, at least a region making contact with the base substrate and a region making contact with the SiC substrate in the Si film.
摘要:
On a p− epitaxial layer, an n-type epitaxial layer and a gate region are formed in this order. A gate electrode is electrically connected to the gate region, and a source electrode and a drain electrode are spaced apart from each other with the gate electrode sandwiched therebetween. A control electrode is used for applying to the p− epitaxial layer a voltage that causes a reverse biased state of the p− epitaxial layer and the n-type epitaxial layer in an OFF operation.
摘要:
A silicon carbide substrate allowing reduction in cost for manufacturing a semiconductor device including a silicon carbide substrate includes a base substrate composed of silicon carbide and an SiC layer composed of single crystal silicon carbide different from the base substrate and arranged on the base substrate in contact therewith. Thus, the silicon carbide substrate 1 is a silicon carbide substrate capable of making effective use of silicon carbide single crystal.