Abstract:
Disclosed are a substrate bonding apparatus and a method of manufacturing a semiconductor device. The substrate bonding apparatus comprises vacuum pumps, a first chuck engaged with the vacuum pumps and adsorbing a first substrate at vacuum pressure of the vacuum pumps, and a pushing unit penetrating a center of the first chuck and pushing the first substrate away from the first chuck. The first chuck comprises adsorption sectors providing different vacuum pressures in an azimuth direction to the first substrate.
Abstract:
A wafer carrier includes a base having a cavity provided at the center of the base and an outer sidewall extending along and away from an edge of the base to define the cavity. The cavity is configured to be filled with an adhesive layer. The wafer carrier is configured to be bonded to a wafer with an adhesive layer in the cavity of base such that the outer sidewall faces and is in contact with an edge of the wafer and the cavity faces a center of the wafer.
Abstract:
A semiconductor device having a chip stack and an interconnection terminal is provided. The chip stack includes a first semiconductor chip, a second semiconductor chip and a third semiconductor chip stacked on each other. The interconnection terminal is electrically coupled to the chip stack. The first semiconductor chip includes a first front surface and a first backside surface. The second semiconductor chip includes a second front surface, a second backside surface, a second circuit layer and a through-electrode which is electrically coupled to the second circuit layer and penetrates the second semiconductor chip. The third semiconductor chip includes a third front surface, a third backside surface opposite to the third front surface and a third circuit layer adjacent to the third front surface. The first front surface and the second front surface face each other. The third front surface and the second backside surface face each other.
Abstract:
A conductive via of a semiconductor device is provided extending in a vertical direction through a substrate, a first end of the conductive via extending through a first surface of the substrate, so that the first end protrudes in the vertical direction relative to the first surface of the substrate. An insulating layer is provided on the first end of the conductive via and on the first surface of the substrate. An upper portion of a mask layer pattern is removed so that a capping portion of the insulating layer that is on the first end of the conductive via is exposed. A portion of the insulating layer at a side of, and spaced apart from, the conductive via, is removed, to form a recess in the insulating layer. The capping portion of the insulating layer on the first end of the conductive via is simultaneously removed.
Abstract:
A substrate bonding method and apparatus are described. The substrate bonding apparatus is used to bond a first substrate to a second substrate. The bonding apparatus includes a first bonding chuck configured to hold the first substrate on a first surface of the first bonding chuck; a second bonding chuck configured to hold the second substrate on a second surface of the second bonding chuck, the second surface facing the first surface of the first bonding chuck; a seal arranged between the first bonding chuck and the second bonding chuck and adjacent to at least one edge of the first substrate and at least one edge of the second substrate; and a process gas supply device configured to supply a process gas to a bonding space surrounded by the seal.
Abstract:
An electronic device identifies an occurrence of a first event for displaying a first notification message on at least a portion of the display module of the first shape, detects a beginning of shape transformation of the display module from the first shape to the second shape, and maintains the display of the first notification message during the shape transformation of the display module.
Abstract:
A substrate bonding method and apparatus are described. The substrate bonding apparatus is used to bond a first substrate to a second substrate. The bonding apparatus includes a first bonding chuck configured to hold the first substrate on a first surface of the first bonding chuck; a second bonding chuck configured to hold the second substrate on a second surface of the second bonding chuck, the second surface facing the first surface of the first bonding chuck; a seal arranged between the first bonding chuck and the second bonding chuck and adjacent to at least one edge of the first substrate and at least one edge of the second substrate; and a process gas supply device configured to supply a process gas to a bonding space surrounded by the seal.
Abstract:
A substrate bonding apparatus for bonding a first substrate to a second substrate includes a first bonding chuck configured to fix the first substrate to a first surface of the first bonding chuck; a second bonding chuck configured to fix the second substrate to a second surface of the second bonding chuck, the second surface facing the first surface; a process gas injector surrounding at least one selected from the first bonding chuck and the second bonding chuck in a plan view, the process gas injector configured to inject a process gas between the first substrate and the second substrate when respectively disposed on the first bonding chuck and the second bonding chuck; and an air curtain generator disposed at an outside of the process gas injector in the plan view, the air curtain generator configured to inject an air curtain forming gas to form an air curtain surrounding the first substrate and the second substrate.
Abstract:
A substrate bonding apparatus includes a lower chuck that receives a lower substrate and an upper chuck disposed above the lower chuck. An upper substrate is fixed to the upper chuck. The upper chuck and the lower chuck bond the upper substrate to the lower substrate. The upper chuck has an upper convex surface toward the lower chuck. The upper convex surface includes a plurality of first ridges and a plurality of first valleys disposed alternately along an azimuthal direction.
Abstract:
A substrate bonding apparatus includes a first bonding chuck configured to support a first substrate and a second bonding chuck configured to support a second substrate such that the second substrate faces the first substrate. The first bonding chuck includes a first base, a first deformable plate on the first base and configured to support the first substrate and configured to be deformed such that a distance between the first base and the first deformable plate is varied, and a first piezoelectric sheet on the first deformable plate and configured to be deformed in response to power applied thereto to deform the first deformable plate.