Abstract:
An apparatus for plasma etching having an electrostatic chuck including a base layer, a bonding layer, an adsorption layer including a plurality of protrusions on the bonding layer and contacting a lower surface of a substrate, and an edge ring spaced apart from and surrounding a lateral surface of the substrate; a plurality of coolant suppliers injecting a coolant between the plurality of protrusions; a plurality of pipes supplying the coolant to the plurality of coolant suppliers to circulate the coolant in a predetermined direction; a cooling device in which the plasma etching process includes first and second operations, wherein the coolant is injected to cause the electrostatic chuck to reach a first temperature during the first operation, and reach a second temperature during the second operation; and a controller controlling a valve connected to the plurality of pipes to determine a circulation direction of the coolant.
Abstract:
Semiconductor processing equipment and an electrostatic chuck include a semiconductor having: an upper electrode; a gas supplier connected to the upper electrode; and a substrate supporting structure spaced apart from the upper electrode to define a processing volume. The substrate supporting structure supports a substrate and includes: a lower electrode having a side area disposed outside a step formed at an outer perimeter portion of the lower electrode and a processing area disposed inside the step; a first plate disposed on the lower electrode; an attraction electrode disposed on the first plate; and a second plate disposed on the attraction plate. The second plate supports the substrate in a state in which the substrate is laid on an upper surface of the second plate. Each of the first plate and the second plate includes ceramic. The lower electrode has a maximum height at a central portion of the processing area.
Abstract:
A method of forming a plasma processing apparatus comprises providing a chamber, the chamber including a wall defining an interior, and a viewport extending through the wall. An analysis apparatus connected to the viewport may be formed. The analysis apparatus includes an analyzer adjacent to the chamber, a probe connected to the analyzer and aligned with the viewport, and a first window aligned with the probe, the first window having a first surface, and a second surface at an opposite side relative to the first surface, the second surface being exposed to the interior of the chamber, and the second surface of the first window has a scattering surface.
Abstract:
According to some embodiments, a semiconductor substrate processing apparatus includes a housing, a plasma source unit, an electrostatic chuck, and a ring unit. The housing encloses a process chamber. The plasma source unit is connected to the housing, and includes a shower head and a fixing ring positioned to support the shower head. The shower head includes an upper electrode mounted on the fixing ring, and includes injection holes passing through part of the upper electrode and configured to inject gas into the chamber. The electrostatic chuck is connected to the housing and includes a lower electrode, and is for mounting a semiconductor substrate thereon. The ring unit is mounted on an edge portion of the electrostatic chuck, and includes a focus ring and a cover ring surrounding the focus ring. One of the lower electrode and the upper electrode is connected to a high frequency power supply, and the other of the lower electrode and the upper electrode is connected to ground. The focus ring has an inner side surface, and an opposite outer side surface that contacts the cover ring, and a width between the inner side surface and the outer side surface of the focus ring is a first width. The cover ring has an inner side surface that contacts the outer side surface of the focus ring, and an outer side surface, and a width between the inner side surface and the outer side surface of the cover ring is a second width. The first width is between 2 and 10 time the second width.
Abstract:
A cover plate, a plasma treatment system, and a plasma treatment method therewith are disclosed. The plasma treatment system may include a window, an antenna electrode disposed on the window, and a cover plate disposed between the antenna electrode and the window to cover top and side surfaces of the window.
Abstract:
A cover plate, a plasma treatment system, and a plasma treatment method therewith are disclosed. The plasma treatment system may include a window, an antenna electrode disposed on the window, and a cover plate disposed between the antenna electrode and the window to cover top and side surfaces of the window.
Abstract:
A method of monitoring a substrate processing apparatus includes applying a high-frequency radio frequency (RF) power signal and a low-frequency RF power signal from a bias power supply apparatus to an electrostatic chuck of a process chamber through a matching circuit. The method further includes applying a direct current (DC) power signal from a DC power supply apparatus to an edge ring of the process chamber through a high-frequency filter and a low-frequency filter. The method further includes measuring a low-frequency RF voltage value at a first point between the matching circuit and the electrostatic chuck, measuring the low-frequency RF voltage value at a second point between the high-frequency filter and the low-frequency filter, and acquiring a voltage ratio between the low-frequency RF voltage value at the first point and the low-frequency RF voltage value at the second point. The method further includes monitoring a state of the edge ring by comparing a threshold with the voltage ratio.
Abstract:
An apparatus for plasma etching having an electrostatic chuck including a base layer, a bonding layer, an adsorption layer including a plurality of protrusions on the bonding layer and contacting a lower surface of a substrate, and an edge ring spaced apart from and surrounding a lateral surface of the substrate; a plurality of coolant suppliers injecting a coolant between the plurality of protrusions; a plurality of pipes supplying the coolant to the plurality of coolant suppliers to circulate the coolant in a predetermined direction; a cooling device in which the plasma etching process includes first and second operations, wherein the coolant is injected to cause the electrostatic chuck to reach a first temperature during the first operation, and reach a second temperature during the second operation; and a controller controlling a valve connected to the plurality of pipes to determine a circulation direction of the coolant.
Abstract:
A plasma processing apparatus includes: an electrostatic chuck supporting a wafer, and connected to a first power supply, an edge ring disposed to surround an edge of the electrostatic chuck and formed of a material having a first resistivity value, a dielectric ring supporting a lower portion of the edge ring, formed of a material having a second resistivity value lower than that of the first resistivity value, and connected to a second power supply, and an electrode ring disposed in a region overlapping the dielectric ring, in contact with a lower surface of the edge ring, and formed of a material having a third resistivity value greater than the first resistivity value, wherein the third resistivity value is a value of 90 Ωcm to 1000 Ωcm.
Abstract:
An apparatus for plasma etching having an electrostatic chuck including a base layer, a bonding layer, an adsorption layer including a plurality of protrusions on the bonding layer and contacting a lower surface of a substrate, and an edge ring spaced apart from and surrounding a lateral surface of the substrate; a plurality of coolant suppliers injecting a coolant between the plurality of protrusions; a plurality of pipes supplying the coolant to the plurality of coolant suppliers to circulate the coolant in a predetermined direction; a cooling device in which the plasma etching process includes first and second operations, wherein the coolant is injected to cause the electrostatic chuck to reach a first temperature during the first operation, and reach a second temperature during the second operation; and a controller controlling a valve connected to the plurality of pipes to determine a circulation direction of the coolant.