Abstract:
A semiconductor stack and a method for manufacturing the same are disclosed. The semiconductor stack includes a lower chip, an upper chip disposed over the lower chip, an upper lateral-side passivation layer surrounding side surfaces of the upper chip, and a plurality of bonding pads and a bonding passivation layer disposed between the upper chip and the lower chip.
Abstract:
A substrate processing apparatus may include a substrate jig device and a transfer unit, which is configured to hold a substrate in a non-contact state and move the substrate toward the substrate jig device. The substrate jig device may include a supporter, which is configured to support an edge of the substrate and have an opening, a first suction part, which overlaps with a center region of the opening and is configured to move in a first direction, and a plurality of second suction parts, which overlap with an edge region of the opening and are configured to move toward the opening. Here, the first direction may be a direction passing through the opening.
Abstract:
The present inventive concepts provide a liquid composition for etching a metal containing copper. The liquid composition may include hydrogen peroxide in a range of about 0.1 wt % to about 10 wt % and a buffer solution in a range of about 0.1 wt % to about 10 wt %. The buffer solution may include citrate. The liquid composition may have a pH in a range of about 4.0 to about 7.0.
Abstract:
A semiconductor package includes first to fourth semiconductor chips sequentially stacked on one another. A backside of a third substrate of the third semiconductor chip may be arranged to face a backside surface of a second substrate of the second semiconductor chip such that the third substrate and a second backside insulation layer provided on the backside surface of the second substrate are bonded directly to each other, or the backside of the third substrate may be arranged to face a front surface of the second substrate such that the third substrate and a second front insulation layer provided on the front surface of the second substrate are bonded directly to each other.
Abstract:
A semiconductor device may include a substrate including a first surface and a second surface, which are opposite to each other, an insulating layer on the first surface of the substrate, a first via structure and a second via structure penetrating the substrate and a portion of the insulating layer and having different widths from each other in a direction parallel to the first surface of the substrate, metal lines provided in the insulating layer, and an integrated circuit provided on the first surface of the substrate. A bottom surface of the first via structure may be located at a level lower than a bottom surface of the second via structure, when measured from the first surface of the substrate. The second via structure may be electrically connected to the integrated circuit through the metal lines.
Abstract:
A substrate bonding apparatus for bonding a first substrate to a second substrate includes a first bonding chuck configured to fix the first substrate to a first surface of the first bonding chuck; a second bonding chuck configured to fix the second substrate to a second surface of the second bonding chuck, the second surface facing the first surface; a process gas injector surrounding at least one selected from the first bonding chuck and the second bonding chuck in a plan view, the process gas injector configured to inject a process gas between the first substrate and the second substrate when respectively disposed on the first bonding chuck and the second bonding chuck; and an air curtain generator disposed at an outside of the process gas injector in the plan view, the air curtain generator configured to inject an air curtain forming gas to form an air curtain surrounding the first substrate and the second substrate.
Abstract:
A semiconductor device includes a semiconductor substrate having a first surface adjacent to an active layer; a first insulating layer disposed on the first surface of the semiconductor substrate; a second insulating layer disposed on the first insulating layer; an etch stop structure interposed between the first insulating layer and the second insulating layer and including a plurality of etch stop layers; a contact wiring pattern disposed inside the second insulating layer and surrounded by at least one etch stop layer of the plurality of etch stop layers; and a through electrode structure configured to pass through the semiconductor substrate, the first insulating layer, and at least one etch stop layer of the plurality of etch stop layers in a vertical direction and contact the contact wiring pattern.
Abstract:
The present inventive concepts provide a liquid composition for etching a metal containing copper. The liquid composition may include hydrogen peroxide in a range of about 0.1 wt % to about 10 wt % and a buffer solution in a range of about 0.1 wt % to about 10 wt %. The buffer solution may include citrate. The liquid composition may have a pH in a range of about 4.0 to about 7.0.
Abstract:
Provided are a carrier and a method of fabricating a semiconductor device using the same. The carrier may include a recess region provided adjacent to an edge thereof. The recess region may be configured to confine an adhesive layer within a desired region including the recess region. The recess region makes it possible to reduce a process failure in a process of fabricating a semiconductor device.