Abstract:
An organic light emitting display panel includes a base substrate, a pixel defining layer disposed on the base substrate, a light emitting structure disposed in an opening of the pixel defining layer, and a mirror pattern disposed on an upper surface of the pixel defining layer. The pixel defining layer defines the opening and includes the upper surface that is in parallel with a surface of the base substrate and a side surface that is connected to the upper surface. The mirror pattern makes contact with the pixel defining layer, and entirely covers the upper surface of the pixel defining layer.
Abstract:
A thin film transistor (TFT) and an organic light emitting diode (OLED) display device. The TFT and the OLED display device include a substrate, a buffer layer disposed on the substrate, a semiconductor layer disposed on the buffer layer, a gate electrode insulated from the semiconductor layer, a gate insulating layer insulating the semiconductor layer from the gate electrode, and source and drain electrodes insulated from the gate electrode and partially connected to the semiconductor layer, wherein the semiconductor layer is formed from a polycrystalline silicon layer crystallized by a metal catalyst and the metal catalyst is removed by gettering using an etchant. In addition, the OLED display device includes an insulating layer disposed on the entire surface of the substrate, a first electrode disposed on the insulating layer and electrically connected to one of the source and drain electrodes, an organic layer, and a second electrode.
Abstract:
A transparent display substrate including a base substrate having a pixel area and a transmission area, a thickness of the base substrate at the transmission area being less than a thickness of the base substrate at the pixel area, a pixel circuit at the pixel area of the base substrate, an insulation structure covering the pixel circuit, the insulation structure having an opening or a concave portion at the transmission area of the base substrate, and a pixel electrode at the pixel area of the base substrate and extending at least partially through the insulation structure to be electrically connected to the pixel circuit.
Abstract:
A light-scattering substrate which can be thinned and has improved thermal resistance, a method of manufacturing the same, an organic light-emitting display device including the same, and a method of manufacturing the organic light-emitting display device are disclosed. The light-scattering substrate includes a light-scattering layer composed of a plurality of metal nanoparticles which are attached to at least a surface of a substrate. The metal nanoparticles are formed by agglomeration of a metal on the substrate, and show a surface plasmon phenomenon.
Abstract:
A display device may include a display unit disposed on a substrate and a mirror substrate facing the substrate with respect to the display unit. The mirror substrate may include a first mirror layer extending continuously on a surface of a transparent substrate and a plurality of mirror patterns on the first mirror layer. The first mirror layer is formed on both a region in which the plurality of mirror patterns are formed and a region in which the plurality of mirror patterns are not formed. External light is incident to and reflected by the first mirror layer, thus reducing an image haze and enhancing a display quality of the display device. In addition, the first mirror layer and the plurality of mirror patterns may be formed by using a single halftone mask to simplify the manufacturing process and increase a productivity of the mirror substrate.
Abstract:
A display device may include a display unit disposed on a substrate and a mirror substrate facing the substrate with respect to the display unit. The mirror substrate may include a first minor layer extending continuously on a surface of a transparent substrate and a plurality of minor patterns on the first mirror layer. The first minor layer is formed on both a region in which the plurality of minor patterns are formed and a region in which the plurality of minor patterns are not formed. External light is incident to and reflected by the first minor layer, thus reducing an image haze and enhancing a display quality of the display device. In addition, the first mirror layer and the plurality of mirror patterns may be formed by using a single halftone mask to simplify the manufacturing process and increase a productivity of the mirror substrate.
Abstract:
An organic light emitting display panel includes a base substrate, a pixel defining layer disposed on the base substrate, a light emitting structure disposed in an opening of the pixel defining layer, and a mirror pattern disposed on an upper surface of the pixel defining layer. The pixel defining layer defines the opening and includes the upper surface that is in parallel with a surface of the base substrate and a side surface that is connected to the upper surface. The mirror pattern makes contact with the pixel defining layer, and entirely covers the upper surface of the pixel defining layer.
Abstract:
An organic light emitting display device includes a first substrate, a pixel structure, a second substrate, a reflective member, and a light transmitting member. The first substrate includes a plurality of pixel regions. Each of the pixel regions has sub-pixel regions and a reflective region surrounding the sub-pixel regions. The pixel structure is disposed in each of the sub-pixel regions on the first substrate. The second substrate is disposed on the pixel structure. The reflective member has an opening disposed in each of the sub-pixel regions, and is disposed in the reflective region of the second substrate. The light transmitting member covers the opening of the reflective member and partially overlaps the reflective member. The light transmitting member blocks ultraviolet rays and transmits a predetermined light.
Abstract:
A light-scattering substrate which can be thinned and has improved thermal resistance, a method of manufacturing the same, an organic light-emitting display device including the same, and a method of manufacturing the organic light-emitting display device are disclosed. The light-scattering substrate includes a light-scattering layer composed of a plurality of metal nanoparticles which are attached to at least a surface of a substrate. The metal nanoparticles are formed by agglomeration of a metal on the substrate, and show a surface plasmon phenomenon.