Abstract:
The performances of semiconductor elements disposed in a multilayer wiring layer are improved. A semiconductor device includes: a first wire disposed in a first wiring layer; a second wire disposed in a second wiring layer stacked over the first wiring layer; a gate electrode arranged between the first wire and the second wire in the direction of stacking of the first wiring layer and the second wiring layer, and not coupled with the first wire and the second wire; a gate insulation film disposed over the side surface of the gate electrode; and a semiconductor layer disposed over the side surface of the gate electrode via the gate insulation film, and coupled with the first wire and the second wire.
Abstract:
A semiconductor device includes a first insulating layer (interlayer insulating layer), a resistive element that is disposed over the first insulating layer (interlayer insulating layer) and at least a surface layer of which is a TaSiN layer, and an interlayer insulating layer disposed over the first insulating layer (interlayer insulating layer) and the resistive element. Multiple via plugs having ends coupled to the TaSiN layer are disposed in the interlayer insulating layer.
Abstract:
A semiconductor device includes a substrate, an interlayer insulation layer, first transistors, a multilayered interconnect layer, capacitance devices, metal interconnects, and first contacts. Interlayer insulation films are disposed over the substrate. The first transistors are disposed to the substrate and buried in the interlayer insulation layer. The first transistor has at least a gate electrode and a diffusion electrode. A multilayered interconnect layer is disposed over the interlayer insulation film. The capacitance devices are disposed in the multilayered interconnect layer. The metal interconnect is in contact with the upper surface of the gate electrode and buried in the interlayer insulation layer. The first contact is coupled to the diffusion layer of the first transistor and buried in the interlayer insulation layer. The metal interconnect includes a material identical with that of the first contact.
Abstract:
A semiconductor device includes a logic circuit and an active element circuit. The logic circuit is provided with semiconductor elements formed in a semiconductor substrate. The active element circuit is provided with transistors formed using semiconductor layers formed over a diffusion insulating film formed above a semiconductor substrate. The active element circuit is controlled by the logic circuit.
Abstract:
A semiconductor device in which MRAM is formed in a wiring layer A contained in a multilayered wiring layer, the MRAM having at least two first magnetization pinning layers in contact with a first wiring formed in a wiring layer and insulated from each other, a free magnetization layer overlapping the two first magnetization pinning layers in a plan view, and connected with the first magnetization pinning layers, a non-magnetic layer situated over the free magnetization layer, and a second magnetization pinning layer situated over the non-magnetic layer.
Abstract:
A semiconductor device, includes a semiconductor substrate, a first interconnect layer formed over the semiconductor substrate, a gate electrode formed in the first interconnect layer, a gate insulating film formed over the gate electrode, a second interconnect layer formed over the gate insulating film, an oxide semiconductor layer formed in the second interconnect layer, and a via formed in the second interconnect layer and connected to the oxide semiconductor layer. The gate electrode, the gate insulating film and the oxide semiconductor layer overlap in a plan view.
Abstract:
The method of manufacturing a semiconductor device, including preparing a semiconductor substrate, forming a first insulating layer over said semiconductor substrate, forming first grooves in the first insulating film, forming a gate electrode and a first interconnect in the first grooves, respectively, forming a gate insulating film over the gate electrode, forming a semiconductor layer over the gate insulating, forming a second insulating layer over the semiconductor layer and the first insulating film, forming a via in the second insulating layer, and forming a second interconnect such that the second interconnect is connected to the semiconductor layer through the via. The gate electrode, the first interconnect and the second interconnect are formed by Cu or Cu alloy, respectively.
Abstract:
A semiconductor device includes a semiconductor substrate on which a semiconductor device is formed; first and second pads; a first insulating film which is formed above the semiconductor substrate; a plurality of wiring lines which are embedded in ditches provided in the first insulating film; a second insulating film provided to cover the first insulating film and the plurality of wiring lines; a semiconductor layer formed on the second insulating film; a source electrode connected with the semiconductor layer; and a drain electrode connected with the semiconductor layer. The plurality of wiring lines includes a gate electrode provided in a position which is opposite to the semiconductor layer. The semiconductor layer, the source electrode, the drain electrode and the gate electrode configure an ESD protection device to discharge a current by ESD surge from the first pad to the second pad.
Abstract:
A semiconductor device including a semiconductor substrate, a first insulating layer formed over said semiconductor substrate, first grooves formed in said first insulating layer, a gate electrode and a first interconnect filled in said first grooves, respectively, a gate insulating film formed over said gate electrode, a semiconductor layer formed over said gate insulating, a second insulating layer formed over said semiconductor layer and said first insulating film, a via formed in said second insulating layer and connected to said semiconductor layer, a second groove formed in said second insulating layer, and a second interconnect filled in said second groove, formed over said via and connected to said via.
Abstract:
A semiconductor device includes a first insulating layer (interlayer insulating layer), a resistive element that is disposed over the first insulating layer (interlayer insulating layer) and at least a surface layer of which is a TaSiN layer, and an interlayer insulating layer disposed over the first insulating layer (interlayer insulating layer) and the resistive element. Multiple via plugs having ends coupled to the TaSiN layer are disposed in the interlayer insulating layer.