Abstract:
A transmitter is provided that includes a voltage-mode driver and a current-mode driver. The current-mode driver includes a plurality of transconductors biased by high-pass filtered versions of a differential output voltage from the voltage-mode driver.
Abstract:
A receiver has a first equalizer circuit that includes a first stage having a source degeneration circuit and a trans-impedance amplifier (TIA). The source degeneration circuit includes a resistor coupled in parallel with a capacitor. The TIA includes an embedded variable gain amplifier with a gain controlled by feedback resistors. Each feedback resistor is coupled between input and output of the TIA. In some implementations, the receiving circuit has a second equalizer circuit coupled in series with the first equalizer circuit. The second equalizer circuit includes a first stage having a source degeneration circuit and a TIA. The source degeneration circuit in the second equalizer circuit has a source degeneration resistor coupled in parallel with a source degeneration capacitor and the TIA includes an embedded variable gain amplifier whose gain is controlled by feedback resistors coupled between input and output of the TIA in the second equalizer circuit.
Abstract:
A phase locked loop (PLL) method includes generating a first signal based on a comparison of a phase of a reference clock or signal to a phase of a feedback clock; generating an output clock based on the first signal; generating an intermediate feedback clock including frequency dividing the output clock; fractionally frequency dividing the intermediate feedback clock based on a digital control signal to generate the feedback clock; and generating the digital control signal based on a sampling clock having a frequency greater than a frequency of the feedback clock. In one implementation, a PLL includes a frequency multiplier to generate the sampling clock based on the feedback clock. In another implementation, a PLL uses the intermediate feedback clock as the sampling clock.
Abstract:
A regeneration circuit includes a first inverting circuit and a second inverting circuit. The regeneration circuit also includes a first transistor coupled to an input of the second inverting circuit, and a second transistor coupled to an input of the first inverting circuit, a third transistor and a fourth transistor. A gate of the first transistor and a gate of the fourth transistor are coupled to a first input, and a gate of the second transistor and a gate of the fourth transistor are coupled to a second input. The regeneration circuit further includes a first switch and a second switch. The first switch and the third transistor are coupled in series between a first rail and the first transistor, and the second switch and the fourth transistor are coupled in series between the first rail and the second transistor.
Abstract:
In certain aspects, an apparatus includes a multiplexer having a first input, a second input, a select input, and an output, wherein the first input is configured to receive a first reference clock signal, the second input is configured to receive a second reference clock signal, and the select input is configured to receive a select signal. The multiplexer is configured to select one of the first and second reference clock signals based on the select signal, and output the selected one of the first and second reference clock signals at the output of the multiplexer. The apparatus also includes a clock driver having an input and an output, wherein the input of the clock driver is coupled to the output of the multiplexer.
Abstract:
A phase interpolator is provided with a plurality of slices. Each slice includes a first switch for mixing a first clock signal into an interpolated output signal and a second switch for mixing a second clock signal into the interpolated output signal. In response to a high-resolution signal, at least one of the slices may switch on both the first switch and the second switch.
Abstract:
An amplifier is provided that includes a differential pair of transistors configured to steer a tail current responsive to a differential input voltage. The amplifier also includes a transconductor that tranconducts high-frequency changes in the differential output voltage into a differential bias current conducted through the differential pair of transistors.
Abstract:
Systems and methods for generating clock phase signals with accurate timing relations are disclosed. For example, four clock signals spaced by 90 degrees can be generating from differential CML clock signals. A CML to CMOS converter converts the differential CML clock signals to differential CMOS clock signals and provides duty cycle correction. Delay cells produce delayed clock signals from the differential CMOS clock signals. The differential CMOS clock signals and the delayed clock signals are logically combined to produce four quarter clock signals having active times of one-quarter clock period. Set-reset latches produce the four clock signals from the quarter clock signals. A calibration module control delays of the delay cells and controls the duty cycle correction of the CML to CMOS converter to adjust the timing relationships of the four clock signals. The four clock signals may be used, for example, in a deserializer.
Abstract:
A delay architecture for reducing downtime during frequency switching is described herein. In one embodiment, an adjustable delay circuit comprises a phase-locked loop (PLL) or a delay-locked loop (DLL) configured to generate a bias voltage, and a plurality of delay elements coupled in series, wherein each of the delay elements is biased by the bias voltage. The adjustable delay circuit also comprises a multiplexer coupled to outputs of two or more of the delay elements, wherein each of the outputs corresponds to a different delay of an input signal, and wherein the multiplexer is configured to select one of the outputs based on a data frequency of a memory interface.