Abstract:
A delay architecture for reducing downtime during frequency switching is described herein. In one embodiment, an adjustable delay circuit comprises a phase-locked loop (PLL) or a delay-locked loop (DLL) configured to generate a bias voltage, and a plurality of delay elements coupled in series, wherein each of the delay elements is biased by the bias voltage. The adjustable delay circuit also comprises a multiplexer coupled to outputs of two or more of the delay elements, wherein each of the outputs corresponds to a different delay of an input signal, and wherein the multiplexer is configured to select one of the outputs based on a data frequency of a memory interface.
Abstract:
Techniques for reducing cross-supply current are described herein. In one embodiment, a power circuit comprises a bypass switch coupled between a first power supply and an internal power supply, and a voltage regulator coupled between a second power supply and the internal power supply. The power circuit also comprises a shut-off circuit configured to detect the first power supply powering up before the second power supply during a power-up sequence, to shut off the bypass switch upon detecting the first power supply powering up before the second power supply, to detect the second power supply powering up during the power-up sequence, and to release control of the bypass switch to a controller upon detecting the second power supply powering up.
Abstract:
A receiver architecture for memory reads is described herein. In one embodiment, a memory interface comprises a plurality of transmitters, wherein each of the plurality of transmitters is configured to transmit data to a memory device over a respective one of a plurality of I/O channels. The memory interface also comprises a plurality of receivers, wherein each of the plurality of receivers is coupled to a respective one of the plurality of transmitters, and is configured to receive data from the memory device over the respective one of the plurality of I/O channels. The plurality of receivers are grouped together into a receiver subsystem that is located away from the plurality of transmitters.
Abstract:
A receiver architecture for memory reads is described herein. In one embodiment, a memory interface comprises a plurality of transmitters, wherein each of the plurality of transmitters is configured to transmit data to a memory device over a respective one of a plurality of I/O channels. The memory interface also comprises a plurality of receivers, wherein each of the plurality of receivers is coupled to a respective one of the plurality of transmitters, and is configured to receive data from the memory device over the respective one of the plurality of I/O channels. The plurality of receivers are grouped together into a receiver subsystem that is located away from the plurality of transmitters.