Abstract:
A transceiver is configured for a calibration mode of operation in which an impedance of a transmit chain is tuned responsive to a power measurement of a mixed RF calibration signal to form a tuned transmit chain. A direct conversion mixes an RF calibration signal with a DC offset signal to form the mixed calibration signal. During a normal mode of operation, a heterodyne mixer mixes an LO signal with an IF signal to produce an RF signal that is amplified through the tuned transmit chain.
Abstract:
According to certain aspects, a chip includes a pad, a power amplifier, a transformer coupled between an output of the power amplifier and the pad, a transistor coupled between the transformer and a ground, and a first clamp circuit coupled between a gate of the transistor and a drain of the transistor.
Abstract:
In some aspects, an apparatus includes a transformer including a first inductor, a second inductor, and a third inductor. The apparatus also includes a power amplifier coupled to the first inductor, a first antenna coupled to a first terminal of the second inductor, a second antenna coupled to a second terminal of the second inductor, a first switch coupled between the first terminal of the second inductor and a ground, a second switch coupled between the second terminal of the second inductor and the ground, and a low-noise amplifier coupled to the third inductor.
Abstract:
A device includes a main two-stage low noise amplifier (LNA) configured to amplify a carrier aggregation (CA) communication signal, the main two-stage LNA comprising a first LNA stage and a second LNA stage, an output of the first LNA stage having a first stage second order intermodulation product, the second LNA stage comprising a phase-inverter configured to phase-invert the output of the first LNA stage to generate a second stage phase-inverted output, and an auxiliary LNA stage coupled to the main two-stage LNA, the auxiliary LNA stage configured to cancel the first stage second order intermodulation product.
Abstract:
In certain aspects, a chip includes a pad, and a power amplifier having a first output and a second output. The chip also includes a transformer, wherein the transformer includes a first inductor coupled between a first terminal and a second terminal of the transformer, wherein the first terminal is coupled to the first output of the power amplifier, and the second terminal is coupled to the second output of the power amplifier. The transformer also includes a second inductor coupled between a third terminal and a fourth terminal of the transformer, wherein the third terminal is coupled to the pad. The chip also includes a first switch coupled to the fourth terminal, a shunt inductor coupled in parallel with the first switch, and a low-noise amplifier coupled to the third terminal.
Abstract:
An apparatus is disclosed for oscillator feedthrough calibration, such as a component arrangement that can be calibrated to account for signal leakage from an oscillator coupled to a mixer circuit. In example aspects, the apparatus includes a mixer circuit having a first stage, a second stage, and tuning circuitry. The first stage includes at least one transistor coupled between a mixer input and a mixer output. The second stage includes one or more transistors coupled between the at least one transistor of the first stage and the mixer output. The one or more transistors are also coupled between a local oscillator signal input and the mixer output. The tuning circuitry includes at least one current source coupled to the at least one transistor of the first stage.
Abstract:
Aspects of the present relate to reflection type phase shifters for radio frequency (RF) wireless devices. Reflection type phase structures in accordance with aspects described herein can improve device performance with compact configurations, such as where magnetic and capacitive coupling is integrated into a device design to integrate interactions between elements for improved phase shifting performance in a compact design with wideband performance.
Abstract:
A differential amplifier having a tunable filter is disclosed. The tunable filter may attenuate some common-mode signals while not affecting amplification of differential signals. The tunable filter may include a resonant circuit to select frequencies of common-mode signals to attenuate. The resonant circuit may include a variable capacitor series-coupled to an inductor. A resonant frequency of the resonant circuit may be determined, in part, by a capacitance value of the variable capacitor.
Abstract:
A device includes a load circuit configured to receive an amplified communication signal, the load circuit having a center tapped inductor structure configured to divide the amplified communication signal into a first portion and a second portion, the load circuit configured to resonate at a harmonic of the amplified communication signal.
Abstract:
A device includes a multi-mode low noise amplifier (LNA) having a first amplifier stage, and a second amplifier stage coupled to the first amplifier stage, the second amplifier stage having a plurality of amplification paths configured to amplify a plurality of carrier frequencies, the first amplifier stage configured to bypass the second amplifier stage when the first amplifier stage is configured to amplify a single carrier frequency.