Abstract:
Dynamic random access memory (DRAM) backchannel communication systems and methods are disclosed. In one aspect, a backchannel communication system allows a DRAM to communicate error correction information and refresh alert information to a System on a Chip (SoC), applications processor (AP), or other memory controller.
Abstract:
A memory sub-system may include a memory controller having error correction code (ECC) encoder/decoder logic. The memory controller may be configured to embed link ECC parity bits in unused data mask bits and/or in a mask write data during a mask write operation. The memory controller may also be configured to protect at least a location of the link ECC parity bits during the mask write operation.
Abstract:
Providing memory training of dynamic random access memory (DRAM) systems using port-to-port loopbacks, and related methods, systems, and apparatuses are disclosed. In one aspect, a first port within a DRAM system is coupled to a second port via a loopback connection. A signal is sent to the first port from a System-on-Chip (SoC), and passed to the second port through the loopback connection. The signal is then returned to the SoC, where it may be examined by a closed-loop engine of the SoC. A result corresponding to a hardware parameter may be recorded, and the process may be repeated until an optimal result for the hardware parameter is achieved at the closed-loop engine. By using a port-to-port loopback configuration, the DRAM system parameters regarding timing, power, and other parameters associated with the DRAM system may be trained more quickly and with lower boot memory usage.
Abstract:
Providing memory training of dynamic random access memory (DRAM) systems using port-to-port loopbacks, and related methods, systems, and apparatuses are disclosed. In one aspect, a first port within a DRAM system is coupled to a second port via a loopback connection. A training signal is sent to the first port from a System-on-Chip (SoC), and passed to the second port through the loopback connection. The training signal is then returned to the SoC, where it may be examined by a closed-loop training engine of the SoC. A training result corresponding to a hardware parameter may be recorded, and the process may be repeated until an optimal result for the hardware parameter is achieved at the closed-loop training engine. By using a port-to-port loopback configuration, the DRAM system parameters regarding timing, power, and other parameters associated with the DRAM system may be trained more quickly and with lower boot memory usage.
Abstract:
Serial data transmission for dynamic random access memory (DRAM) interfaces is disclosed. Instead of the parallel data transmission that gives rise to skew concerns, exemplary aspects of the present disclosure transmit the bits of a word serially over a single lane of the bus. Because the bus is a high speed bus, even though the bits come in one after another (i.e., serially), the time between arrival of the first bit and arrival of the last bit of the word is still relatively short. Likewise, because the bits arrive serially, skew between bits becomes irrelevant. The bits are aggregated within a given amount of time and loaded into the memory array.
Abstract:
A memory device may include link error correction code (ECC) decoder and correction circuitry. The ECC decoder and correction circuitry may be arranged in a write path and configured for link error detection and correction of write data received over a data link. The memory device may also include memory ECC encoder circuitry. The memory ECC encoder circuitry may be arranged in the write path and configured for memory protection of the write data during storage in a memory array.
Abstract:
Dynamic random access memory (DRAM) backchannel communication systems and methods are disclosed. In one aspect, a backchannel communication system allows a DRAM to communicate error correction information and refresh alert information to a System on a Chip (SoC), applications processor (AP), or other memory controller.
Abstract:
Dynamic random access memory (DRAM) backchannel communication systems and methods are disclosed. In one aspect, a backchannel communication system allows a DRAM to communicate error correction information and refresh alert information to a System on a Chip (SoC), applications processor (AP), or other memory controller.
Abstract:
Various aspects of an approach for routing die signals in an interior portion of a die using external interconnects are described herein. The approach provides for contacts coupled to circuits in the interior portion of the die, where the contacts are exposed to an exterior portion of the die. The external interconnects are configured to couple these contacts so that signals from the circuits in the interior portion of the die may be routed externally to the die. In various aspects of the disclosed approach, the external interconnects are protected by a packaging for the die.
Abstract:
Systems and methods for recovering clock and data from a data input signal are disclosed that sample a plurality of clock phase signals with the data input signal to determine a timing relationship between the data input signal and the clock phase signals and use the determined to timing relationship to select one of the clock phase signals to use for sampling the data input signal to produce recovered data. The CDR can include a glitch suppression module to suppress glitches on the clock output signal that could be caused by large instantaneous jitter on the data input signal. A clock and data recovery circuit (CDR) using these methods can quickly lock to a new data input signal and can reliably receive data when there is large instantaneous timing jitter on the data input signal.