Abstract:
A measurement system comprises a pulsed, near-infrared array of laser diodes, the laser diode array comprising Bragg reflectors, and wherein laser diode light is configured to penetrate tissue comprising skin. A detection system comprising a camera is synchronized to the laser diodes, and the camera is configured to receive some of the laser diode light reflected from the tissue. The detection system is configured to non-invasively measure blood within the skin, the detection system is configured to measure absorption of hemoglobin in the wavelength range between 700 and 1300 nanometers, and the processor is configured to compare the absorption of hemoglobin between different spatial locations of tissue and over a period of time. Physiological parameters are measured by the system. The measurement system is configured to use artificial intelligence in making decisions, and the system is further configured to use regression signal processing, multivariate data analysis, or component analysis techniques.
Abstract:
A measurement system includes a light source having semiconductor sources, a multiplexer, and one or more fused silica fibers configured to form an output optical beam having one or more optical wavelengths modulated at a modulation frequency. A light beam set-up includes a monochromator forming a filtered optical beam. A measurement apparatus delivers the filtered optical beam to a sample. A receiver receives a spectroscopy output beam generated from the sample by the filtered optical beam. The receiver is configured to use a lock-in technique that detects the modulation frequency, and to generate first and second signals responsive to light received while the light source is off and on, respectively. The measurement system improves a signal-to-noise ratio of the spectroscopy output beam by differencing the first and second signals. The receiver processes the spectroscopy output beam using chemometrics or multivariate analysis to permit identification of materials within the sample.
Abstract:
Measurement apparatus includes sensors configured to generate signals associated with physiological parameters and adapted to be coupled to tissue comprising blood and to communicate signals associated with the parameters to feedback control circuitry capable of generating physiological information from the signals. A software application is configured to operate on a control system capable of receiving the physiological information and configured to receive voice input signals and manually entered input signals. The control system includes a touch-screen, a proximity sensor, circuitry for obtaining movement information from a positioning sensor, a mechanical system having actuators, and a wireless transmitter to transmit the physiological information over a wireless link to a host. The host is configured to generate status information from the data and includes a memory storage device for recording the status information and a communication device communicating the status information to display output devices that may be located remotely.
Abstract:
A system and method for selectively processing target tissue material in a patient include a laser subsystem for generating an output laser beam and a catheter assembly including an optical fiber for guiding the output laser beam. The beam has a predetermined selected wavelength between 900 nm and 2600 nm. The catheter assembly is sized to extend through an opening in a first part of the patient to a tissue material processing site within the patient. A beam delivery and focusing subsystem includes a focal distance, which may be adjustable, that positions the beam into at least one focused spot on the target tissue material disposed within a second part of the patient for a duration sufficient to allow laser energy to be absorbed by the target tissue material and converted to heat to produce a desired physical change in the target tissue material without causing undesirable changes to adjacent non-target material.
Abstract:
An optical system comprises a wearable device for measuring one or more physiological parameters. The physiological parameters may change in response to stretching of the hand or movement of fingers or thumb of the user, or the parameters may be related to blood constituents or blood flow. The wearable device comprises a light source with a plurality of semiconductor diodes and a detection system that measures reflected light from tissue comprising skin. The semiconductor diodes may be light emitting diodes or laser diodes. The signal to noise ratio for the output signal may be improved by synchronizing the detection system to the light source, increasing light intensity of at least one of the plurality of semiconductor diodes from an initial light intensity, and using change detection that compares light on versus light off for the detection system output. The wearable device is also configured to identify an object.
Abstract:
A measurement system comprising one or more semiconductor diodes configured to penetrate tissue comprising skin. The detection system comprising a camera, which may also include a direct or indirect time-of-flight sensor. The detection system synchronized to the pulsing of the semiconductor diodes, and the camera further coupled to a processor. The detection system non-invasively measuring blood within the skin, measuring hemoglobin absorption between 700 to 1300 nm, and the processor deriving physiological parameters and comparing properties between different spatial locations and variation over time. The semiconductor diodes may comprise vertical cavity surface emitting lasers, and the detection system may comprise single photon avalanche photodiodes. The measurement system may be used to observe eye parameters and differential blood flow. The system may be used with photo-bio-modulation therapy, or it may be used in advanced driver monitoring systems for multiple functions including head pose, eye tracking, facial authentication, and smart restraint control systems.
Abstract:
An optical system operating in the near or short-wave infrared wavelength range identifies an object based on water absorption. The system comprises a light source with modulated light emitting diodes operating at wavelengths near 1090 and 1440 nanometers, corresponding to lower and higher water absorption. The system further comprises one or more wavelength selective filters and a housing that is further coupled to an electrical circuit and a processor. The detection system comprises photodetectors that are synchronized to the light source, and the detection system receives at least a portion of light reflected from the object. The system is configured to identify the object by comparing the reflected light at the first and second wavelength to generate an output value, and then comparing the output value to a threshold. The optical system may be further coupled to a wearable device or a remote sensing system with a time-of-flight sensor.
Abstract:
A measurement system comprises a pulsed laser diode array that includes one or more Bragg reflectors, and wherein the light generated by the array penetrates tissue comprising skin. At least some of the wavelengths of light are in the near infrared. The detection system is synchronized to the laser diode array and comprises an infrared camera and a first receiver comprising a plurality of detectors. The first receiver comprises one or more detector arrays and performs a time-of-flight measurement. The measurement system generates an image, the detection system non-invasively measures blood in blood vessels within or below a dermis layer within the skin based at least in part on near-infrared diffuse reflection from the skin, and the detection system measures absorption of hemoglobin between 700 and 1300 nanometers wavelength range. A processor compares the absorption of hemoglobin between different tissue spatial locations, and the measurement system processes the time-of-flight measurement.
Abstract:
A measurement system is provided with a light source that is configured to increase signal-to-noise ratio by increasing a light intensity from at least one of a plurality of semiconductor sources. An apparatus to receive a portion of the output optical beam, and deliver an analysis output beam to a sample. A receiver to: receive and process at least a portion of the analysis output beam reflected or transmitted from the sample, generate an output signal, and synchronize to the light source. A smart phone or tablet to: receive and process at least a portion of the output signal, store and display the processed output signal, and transmit at least a portion of the processed output signal. A cloud to: receive an output status comprising the at least a portion of the processed output signal, process the received output status to generate processed data, and store the processed data.
Abstract:
A smart phone or tablet includes laser diodes configured to be pulsed and generate near-infrared light between 700-2500 nanometers. Lenses direct the light to a sample. A detection system includes a photodiode array with pixels coupled to CMOS transistors, and is configured to receive light reflected from the sample, to be synchronized to the light from the laser diodes, and to perform a time-of-flight measurement of a time difference between light from the laser diodes and light reflected from the sample. The detection system is configured to convert light received while the laser diodes are off into a first signal, and light received while at least one laser diodes is on, which includes light reflected from the sample, into a second signal. The smart phone or tablet is configured to difference the first signal and the second signal and to generate a two-dimensional or three-dimensional image using the time-of-flight measurement.