Abstract:
In one embodiment, a charged particle beam writing apparatus includes a writer writing a pattern on a substrate on a stage with a charged particle beam, a mark substrate disposed on the stage and having a mark, an irradiation position detector detecting an irradiation position of the charged particle beam on a mark surface, a height detector detecting a surface height of the substrate and the mark substrate, a drift correction unit calculating an amount of drift correction, and a writing control unit correcting the irradiation position of the charged particle beam by using the amount of drift correction. The mark substrate has a pattern region with a plurality of marks and a non-pattern region with no pattern therein, and at least part of the non-pattern region is disposed between different portions of the pattern region. The height detector detects a height of a detection point in the non-pattern region.
Abstract:
In one embodiment, a charged particle beam writing apparatus includes a writer writing a pattern on a substrate placed on a stage by irradiating the substrate with a charged particle beam, a height detector detecting a surface height of a mark on the stage, an irradiation position detector detecting an irradiation position of the charged particle beam on the mark surface by irradiation with the charged particle beam focused at the surface height of the mark, a drift correction unit calculating an amount of drift of the charged particle beam on the mark surface from the irradiation position detected by the irradiation position detector, and generating correction information for correcting a shift in irradiation position caused by a drift on the substrate surface based on the amount of drift, and a writing control unit correcting the irradiation position of the charged particle beam by using the correction information.
Abstract:
In one embodiment, a charged particle beam writing apparatus includes a blanking circuit applying a blanking voltage to a blanking deflector, a stage on which a substrate is placed, a mark on the stage, a detector detecting an irradiation position of the charged particle beam based on irradiation of the mark with the charged particle beam, and a diagnostic electric circuitry that causes the charged particle beam to enter a predetermined defocused state relative to the mark, obtains a difference between a first irradiation position when the mark is scanned under first irradiation conditions and a second irradiation position when the mark is scanned under second irradiation conditions in which at least either of irradiation time and settling time in the first irradiation conditions is varied, and determines occurrence of a failure of the blanking circuit when the difference is a predetermined value or more.
Abstract:
According to one embodiment, a charged particle beam writing apparatus includes, a writing mechanism, a writing control circuit, a deflection operation control circuit configured to generate control data for controlling the blanking of each of the charged particle beams based on the shot data, a storage, a blanking control circuit configured to control the blanking based on the control data, and a detector. The writing control circuit is configured to, when the detector detects the abnormality during the writing, interrupt the writing, and generate interrupt position information at a position where the writing is interrupted based on the shot data which has been stored at the storage and is related to the control data that has not been used for controlling the blanking.
Abstract:
A charged particle beam adjustment method includes scanning, with a charged particle beam an emission current of which is set to a first adjustment value smaller than a target value, an aperture substrate including a hole disposed to be a focus position of the charged particle beam using each of lens values in an electron lens and calculating first resolution, calculating a first function of lens values and the first resolution and calculating a lens value range, scanning, with the charged particle beam the emission current of which is set to a second adjustment value, the aperture substrate using each of lens values set to avoid the lens value range and calculating second resolution, calculating a second function of lens values and the second resolution and estimating a lens value at a just focus, and adjusting the electron lens to the lens value at the just focus.
Abstract:
A charged particle beam writing apparatus according to one aspect of the present invention includes an emission unit to emit a charged particle beam, an electron lens to converge the charged particle beam, a blanking deflector, arranged backward of the electron lens with respect to a direction of an optical axis, to deflect the charged particle beam in the case of performing a blanking control of switching between beam-on and beam-off, a blanking aperture member, arranged backward of the blanking deflector with respect to the direction of the optical axis, to block the charged particle beam having been deflected to be in a beam-off state, and a magnet coil, arranged in a center height position of the blanking deflector, to deflect the charged particle beam.
Abstract:
A charged particle beam writing apparatus according to one aspect of the present invention includes an emission unit to emit a charged particle beam, an electron lens to converge the charged particle beam, a blanking deflector, arranged backward of the electron lens with respect to a direction of an optical axis, to deflect the charged particle beam in the case of performing a blanking control of switching between beam-on and beam-off, a blanking aperture member, arranged backward of the blanking deflector with respect to the direction of the optical axis, to block the charged particle beam having been deflected to be in a beam-off state, and a magnet coil, arranged in a center height position of the blanking deflector, to deflect the charged particle beam.
Abstract:
A charged particle beam writing apparatus according to one aspect of the present invention includes an emission unit to emit a charged particle beam, an electron lens to converge the charged particle beam, a blanking deflector, arranged backward of the electron lens with respect to a direction of an optical axis, to deflect the charged particle beam in the case of performing a blanking control of switching between beam-on and beam-off, a blanking aperture member, arranged backward of the blanking deflector with respect to the direction of the optical axis, to block the charged particle beam having been deflected to be in a beam-off state, and a magnet coil, arranged in a center height position of the blanking deflector, to deflect the charged particle beam.
Abstract:
A shaping offset adjustment method, comprising: checking a reference point formed by an overlap of first and second shaping apertures included in a charged particle beam drawing apparatus; changing a position of the first shaping aperture by deflecting a charged particle beam so that an overlap area of the first and second shaping apertures has a predetermined shot size; measuring a current value of the charged particle beam passing through the overlap area; performing fitting on a relationship between the shot size and the corresponding current value using a cubic polynomial to calculate coefficients of the cubic polynomial achieving best fit; and correcting a shaping offset amount using the calculated coefficients of the cubic polynomial.