Abstract:
An integrated circuit device may at least one memory cell configured for dual erase modes. Each memory cell may be configured to be erased via two different nodes, which may be selectively used (e.g., in any switched or alternating manner) to reduce the erase cycling at each individual node and thereby increase (e.g., double) the lifespan of the cell. For example, the device may include flash memory cells having a pair of program/erase nodes (e.g., an erase gate and a word line) formed over each respective floating gate, wherein the program/erase nodes are selectively used (e.g., in any switched or alternating manner) for the cell erase function.
Abstract:
An integrated circuit device may at least one memory cell configured for dual erase modes. Each memory cell may be configured to be erased via two different nodes, which may be selectively used (e.g., in any switched or alternating manner) to reduce the erase cycling at each individual node and thereby increase (e.g., double) the lifespan of the cell. For example, the device may include flash memory cells having a pair of program/erase nodes (e.g., an erase gate and a word line) formed over each respective floating gate, wherein the program/erase nodes are selectively used (e.g., in any switched or alternating manner) for the cell erase function.
Abstract:
A method of forming a memory cell, e.g., flash memory cell, may include (a) depositing polysilicon over a substrate, (b) depositing a mask over the polysilicon, (c) etching an opening in the mask to expose a surface of the polysilicon, (d) growing a floating gate oxide at the exposed polysilicon surface, (e) depositing additional oxide above the floating gate oxide, such that the floating gate oxide and additional oxide collectively define an oxide cap, (f) removing mask material adjacent the oxide cap, (g) etching away portions of the polysilicon uncovered by the oxide cap, wherein a remaining portion of the polysilicon defines a floating gate, and (h) depositing a spacer layer over the oxide cap and floating gate. The spacer layer may includes a shielding region aligned over at least one upwardly-pointing tip region of the floating gate, which helps protect such tip region(s) from a subsequent source implant process.
Abstract:
A method of forming a resistive memory cell, e.g., a CBRAM or ReRAM cell, may include forming a plurality of bottom electrode connections, depositing a bottom electrode layer over the bottom electrode connections, performing an etch to remove portions of the bottom electrode layer to form at least one upwardly-pointing bottom electrode region above the bottom electrode connections, each upwardly-pointing bottom electrode region defining a bottom electrode tip, and forming an electrolyte region and a top electrode over each bottom electrode tip such that the electrolyte region is arranged between the top electrode and the respective bottom electrode top.
Abstract:
A method of forming a resistive memory cell, e.g., a CBRAM or ReRAM, may include forming a bottom electrode layer, oxidizing an exposed region of the bottom electrode layer to form an oxide region, removing a region of the bottom electrode layer proximate the oxide region, thereby forming a bottom electrode having a pointed tip region adjacent the oxide region, and forming an electrolyte region and top electrode over at least a portion of the bottom electrode and oxide region, such that the electrolyte region is arranged between the pointed tip region of the bottom electrode and the top electrode, and provides a path for conductive filament or vacancy chain formation from the pointed tip region of the bottom electrode to the top electrode when a voltage bias is applied to the memory cell. A memory cell and memory cell array formed by such method are also disclosed.
Abstract:
A method is provided for forming an integrated circuit memory cell, e.g., flash memory cell. A pair of spaced-apart floating gate structures may be formed over a substrate. A non-conformal spacer layer may be formed over the structure, and may include spacer sidewall regions laterally adjacent the floating gate sidewalls. A source implant may be performed, e.g., via HVII, to define a source implant region in the substrate. The spacer sidewall region substantially prevents penetration of source implant material, such that the source implant region is self-aligned by the spacer sidewall region. The source implant material diffuses laterally to extend partially under the floating gate. Using the non-conformal spacer layer, including the spacer sidewall regions, may (a) protect the upper corner, or “tip” of the floating gate from rounding and (b) provide lateral control of the source junction edge location under each floating gate.
Abstract:
A memory cell, e.g., a flash memory cell, includes a substrate, a floating gate formed over the substrate, and a word line and an erase gate formed over the floating gate. The word line overlaps the floating gate by a first lateral overlap distance, and the erase gate overlaps the floating gate by a second lateral overlap distance that is substantially greater than the first lateral distance. This configuration allows the program and erase coupling to the floating gate to be optimized independently, e.g., to decrease or minimize the program current and/or increase or maximize the erase current for the cell.
Abstract:
A method is provided for forming a split-gate memory cell having field enhancement regions in the substrate for improved cell performance. The method may include forming a pair of gate structures over a substrate, performing a source implant between the pair of gate structures to form a self-aligned source implant region in the substrate, performing a field enhancement implant process to form field enhancement implant regions, e.g., having an opposite dopant polarity as the source implant, at or adjacent lateral sides of the source implant region, and diffusing the source implant region and field enhancement implant regions to thereby define a source region with field enhanced regions at lateral edges of the source region. The field enhanced implant process may include at least one non-vertical angled implant.
Abstract:
A method of forming a resistive memory cell, e.g., a CBRAM or ReRAM cell, may include forming a plurality of bottom electrode connections, depositing a bottom electrode layer over the bottom electrode connections, performing an etch to remove portions of the bottom electrode layer to form at least one upwardly-pointing bottom electrode region above the bottom electrode connections, each upwardly-pointing bottom electrode region defining a bottom electrode tip, and forming an electrolyte region and a top electrode over each bottom electrode tip such that the electrolyte region is arranged between the top electrode and the respective bottom electrode top.
Abstract:
A method of forming a resistive memory cell, e.g., a CBRAM or ReRAM, may include forming a bottom electrode layer, oxidizing an exposed region of the bottom electrode layer to form an oxide region, removing a region of the bottom electrode layer proximate the oxide region, thereby forming a bottom electrode having a pointed tip region adjacent the oxide region, and forming an electrolyte region and top electrode over at least a portion of the bottom electrode and oxide region, such that the electrolyte region is arranged between the pointed tip region of the bottom electrode and the top electrode, and provides a path for conductive filament or vacancy chain formation from the pointed tip region of the bottom electrode to the top electrode when a voltage bias is applied to the memory cell. A memory cell and memory cell array formed by such method are also disclosed.