Abstract:
A method of forming a resistive memory cell, e.g., a CBRAM or ReRAM, may include forming a bottom electrode layer, forming an oxide region of an exposed area of the bottom electrode, removing a region of the bottom electrode layer proximate the oxide region to form a bottom electrode having a pointed tip or edge region, and forming first and second electrolyte regions and first and second top electrodes over the bottom electrode to define distinct first and second memory elements. The first memory element defines a first conductive filament/vacancy chain path from the first portion of the bottom electrode pointed tip region to the first top electrode via the first electrolyte region, and second memory element defines a second conductive filament/vacancy chain path from the second portion of the bottom electrode pointed tip region to the second top electrode via the second electrolyte region.
Abstract:
A method of forming a resistive memory cell, e.g., a CBRAM or ReRAM, may include forming a bottom electrode layer, forming an oxide region of an exposed area of the bottom electrode, removing a region of the bottom electrode layer proximate the oxide region to form a bottom electrode having a pointed tip or edge region, and forming first and second electrolyte regions and first and second top electrodes over the bottom electrode to define distinct first and second memory elements. The first memory element defines a first conductive filament/vacancy chain path from the first portion of the bottom electrode pointed tip region to the first top electrode via the first electrolyte region, and second memory element defines a second conductive filament/vacancy chain path from the second portion of the bottom electrode pointed tip region to the second top electrode via the second electrolyte region.
Abstract:
A method of forming a resistive memory cell, e.g., a CBRAM or ReRAM, may include forming a bottom electrode layer, forming an oxide region of an exposed area of the bottom electrode, removing a region of the bottom electrode layer proximate the oxide region to form a bottom electrode having a pointed tip or edge region, and forming first and second electrolyte regions and first and second top electrodes over the bottom electrode to define distinct first and second memory elements. The first memory element defines a first conductive filament/vacancy chain path from the first portion of the bottom electrode pointed tip region to the first top electrode via the first electrolyte region, and second memory element defines a second conductive filament/vacancy chain path from the second portion of the bottom electrode pointed tip region to the second top electrode via the second electrolyte region.
Abstract:
A method of forming a resistive memory cell, e.g., a CBRAM or ReRAM, may include forming a bottom electrode layer, oxidizing an exposed region of the bottom electrode layer to form an oxide region, removing a region of the bottom electrode layer proximate the oxide region, thereby forming a bottom electrode having a pointed tip region adjacent the oxide region, and forming an electrolyte region and top electrode over at least a portion of the bottom electrode and oxide region, such that the electrolyte region is arranged between the pointed tip region of the bottom electrode and the top electrode, and provides a path for conductive filament or vacancy chain formation from the pointed tip region of the bottom electrode to the top electrode when a voltage bias is applied to the memory cell. A memory cell and memory cell array formed by such method are also disclosed.
Abstract:
A resistive memory cell, e.g., CBRAM or ReRAM cell, may include a top electrode an a trench-shaped bottom electrode structure defining a bottom electrode connection and a sidewall extending from a first sidewall region adjacent the bottom electrode connection to a tip region defining a tip surface facing generally away from the bottom electrode connection, and wherein the tip surface facing away from the bottom electrode connection has a tip thickness that is less than a thickness of the first sidewall region adjacent the bottom electrode connection. An electrolyte switching region is arranged between the top electrode and the bottom electrode sidewall tip region to provide a path for the formation of a conductive filament or vacancy chain from the bottom electrode sidewall tip surface of the top electrode, via the electrolyte switching region, when a voltage bias is applied to the resistive memory cell.
Abstract:
A memory cell, e.g., a flash memory cell, includes a substrate, a flat-topped floating gate formed over the substrate, and a flat-topped oxide region formed over the flat-topped floating gate. The flat-topped floating gate may have a sidewall with a generally concave shape that defines an acute angle at a top corner of the floating gate, which may improve a program or erase efficiency of the memory cell. The flat-topped floating gate and overlying oxide region may be formed with without a floating gate thermal oxidation that forms a conventional “football oxide.” A word line and a separate erase gate may be formed over the floating gate and oxide region. The erase gate may overlap the floating gate by a substantially greater distance than the word line overlaps the floating gate, which may allow the program and erase coupling to the floating gate to be optimized independently.
Abstract:
A memory cell, e.g., a flash memory cell, includes a substrate, a floating gate formed over the substrate, and a word line and an erase gate formed over the floating gate. The word line overlaps the floating gate by a first lateral overlap distance, and the erase gate overlaps the floating gate by a second lateral overlap distance that is substantially greater than the first lateral distance. This configuration allows the program and erase coupling to the floating gate to be optimized independently, e.g., to decrease or minimize the program current and/or increase or maximize the erase current for the cell.
Abstract:
A method of forming a resistive memory cell, e.g., a CBRAM or ReRAM cell, may include: forming a plurality of bottom electrode connections, depositing a bottom electrode layer over the bottom electrode connections, performing a first etch to remove portions of the bottom electrode layer such that the remaining bottom electrode layer defines at least one sloped surface, forming an oxidation layer on each sloped surface of the remaining bottom electrode layer, performing a second etch on the remaining bottom electrode layer and oxidation layer on each sloped surface to define at least one upwardly-pointing bottom electrode region above each bottom electrode connection, each upwardly-pointing bottom electrode region defining a bottom electrode tip, and forming an electrolyte region and a top electrode over each bottom electrode tip such that the electrolyte region is arranged between the top electrode and the respective bottom electrode top.
Abstract:
A method of forming a resistive memory cell, e.g., a CBRAM or ReRAM, may include forming a bottom electrode layer, forming an oxide region of an exposed area of the bottom electrode, removing a region of the bottom electrode layer proximate the oxide region to form a bottom electrode having a pointed tip or edge region, and forming first and second electrolyte regions and first and second top electrodes over the bottom electrode to define distinct first and second memory elements. The first memory element defines a first conductive filament/vacancy chain path from the first portion of the bottom electrode pointed tip region to the first top electrode via the first electrolyte region, and second memory element defines a second conductive filament/vacancy chain path from the second portion of the bottom electrode pointed tip region to the second top electrode via the second electrolyte region.
Abstract:
A resistive memory cell, e.g., CBRAM or ReRAM cell, may include a top electrode an a trench-shaped bottom electrode structure defining a bottom electrode connection and a sidewall extending from a first sidewall region adjacent the bottom electrode connection to a tip region defining a tip surface facing generally away from the bottom electrode connection, and wherein the tip surface facing away from the bottom electrode connection has a tip thickness that is less than a thickness of the first sidewall region adjacent the bottom electrode connection. An electrolyte switching region is arranged between the top electrode and the bottom electrode sidewall tip region to provide a path for the formation of a conductive filament or vacancy chain from the bottom electrode sidewall tip surface of the top electrode, via the electrolyte switching region, when a voltage bias is applied to the resistive memory cell.