Abstract:
An open plasma lamp includes a cavity section. A gas input and gas output of the cavity section are arranged to flow gas through the cavity section. The plasma lamp also includes a gas supply assembly fluidically coupled to the gas input of the cavity section and configured to supply gas to an internal volume of the cavity section. The plasma lamp also includes a nozzle assembly fluidically coupled to the gas output of the cavity section. The nozzle assembly and cavity section are arranged such that a volume of the gas receives pumping illumination from a pump source, where a sustained plasma emits broadband radiation. The nozzle assembly is configured to establish a convective gas flow from within the cavity section to a region external to the cavity section such that a portion of the sustained plasma is removed from the cavity section by the gas flow.
Abstract:
An apparatus for cross-flow purging for optical components in a chamber, including: a housing with first and second axial ends, a side wall extending in an axial direction and connecting the first and second axial ends, and the chamber formed by the first and second axial ends and the side wall; an optical component disposed within the chamber and fixed with respect to the housing via at least one connecting point on the optical component; an inlet port aligned with the side wall, between the first and second axial ends in the axial direction, in a radial direction orthogonal to the axial direction and arranged to inject a purge gas into the chamber and across the optical component in a radial direction orthogonal to the axial direction; and an exhaust port aligned with the side wall in the radial direction and arranged to exhaust the purge gas from the chamber.
Abstract:
A system for imaging a sample through a protective pellicle is disclosed. The system includes an electron beam source configured to generate an electron beam and a sample stage configured to secure a sample and a pellicle, wherein the pellicle is disposed above the sample. The system also includes an electron-optical column including a set of electron-optical elements to direct at least a portion of the electron beam through the pellicle and onto a portion of the sample. In addition, the system includes a detector assembly positioned above the pellicle and configured to detect electrons emanating from the surface of the sample.
Abstract:
An apparatus for producing EUV light, including: a plate with pluralities of through-bores; at least one power system; and a plurality of discharge plasma devices disposed in the through-bores. Each device includes: a respective plasma electrode forming at least part of a respective plasma-producing region; a respective magnetic core embedded in the plate and aligned with the respective plasma electrode in a radial direction and configured to create a respective magnetic field within the respective plasma-producing region; and a respective feed system arranged to supply an ionizable material to the respective plasma-producing region. The power system is configured to supply electrical power to the plasma electrodes to create respective electric fields in the respective plasma-producing regions. The combination of the respective electric field and the respective magnetic fields is arranged to create respective plasma from the ionizable material, the respective plasma creating respective EUV light.
Abstract:
A computer-implemented method for determining an optimized purge gas flow in a semi-conductor inspection metrology or lithography apparatus, comprising receiving a permissible contaminant mole fraction, a contaminant outgassing flow rate associated with a contaminant, a contaminant mass diffusivity, an outgassing surface length, a pressure, a temperature, a channel height, and a molecular weight of a purge gas, calculating a flow factor based on the permissible contaminant mole fraction, the contaminant outgassing flow rate, the channel height, and the outgassing surface length, comparing the flow factor to a predefined maximum flow factor value, calculating a minimum purge gas velocity and a purge gas mass flow rate from the flow factor, the contaminant mass diffusivity, the pressure, the temperature, and the molecular weight of the purge gas, and introducing the purge gas into the semi-conductor inspection metrology or lithography apparatus with the minimum purge gas velocity and the purge gas flow rate.
Abstract:
An apparatus for producing EUV light, including: a plate with pluralities of through-bores; at least one power system; and a plurality of discharge plasma devices disposed in the through-bores. Each device includes: a respective plasma electrode forming at least part of a respective plasma-producing region; a respective magnetic core embedded in the plate and aligned with the respective plasma electrode in a radial direction and configured to create a respective magnetic field within the respective plasma-producing region; and a respective feed system arranged to supply an ionizable material to the respective plasma-producing region. The power system is configured to supply electrical power to the plasma electrodes to create respective electric fields in the respective plasma-producing regions. The combination of the respective electric field and the respective magnetic fields is arranged to create respective plasma from the ionizable material, the respective plasma creating respective EUV light.
Abstract:
An apparatus for purifying a controlled-pressure environment in a chamber, including: a piece of lithium-aluminum alloy located in the chamber; an activation element arranged to impart energy to the piece of lithium-aluminum alloy to sublimate lithium from the piece of lithium-aluminum alloy; a feedback control system including a sensor system arranged to measure a condition within the chamber, and a controller in communication with the sensor and configured to control operation of the activation element according to an evaluation of the condition; and a collection plate located in the chamber and arranged to form a layer of the sublimated lithium on a surface of the collection plate.
Abstract:
An inspection system including an optical system (optics) to direct light from an illumination source to a sample, and to direct light reflected/scattered from the sample to one or more image sensors. At least one image sensor of the system is formed on a semiconductor membrane including an epitaxial layer having opposing surfaces, with circuit elements formed on one surface of the epitaxial layer, and a pure boron layer and a doped layer on the other surface of the epitaxial layer. The image sensor may be fabricated using CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) technology. The image sensor may be a two-dimensional area sensor, or a one-dimensional array sensor. The image sensor can be included in an electron-bombarded image sensor and/or in an inspection system.
Abstract:
A high-brightness electron beam source is disclosed. The electron beam source may include a broadband illumination source configured to generate broadband illumination. A tunable spectral filter may be configured to filter the broadband illumination to provide filtered illumination having an excitation spectrum. The electron beam source may further include a photocathode configured to emit one or more electron beams in response to the filtered illumination, wherein emission from the photocathode is adjustable based on the excitation spectrum of the filtered illumination from the tunable spectral filter.
Abstract:
The present invention for imaging sensor rejuvenation may include a rejuvenation illumination system configured to selectably illuminate a portion of an imaging sensor of an imaging system with illumination suitable for at least partially rejuvenating the imaging sensor degraded by exposure to at least one of extreme ultraviolet light or deep ultraviolet light; and a controller communicatively coupled to the rejuvenation illumination system and configured to direct the rejuvenation illumination system to illuminate the imaging sensor for one or more illumination cycles during a non-imaging state of the imaging sensor.