Abstract:
The present invention for imaging sensor rejuvenation may include a rejuvenation illumination system configured to selectably illuminate a portion of an imaging sensor of an imaging system with illumination suitable for at least partially rejuvenating the imaging sensor degraded by exposure to at least one of extreme ultraviolet light or deep ultraviolet light; and a controller communicatively coupled to the rejuvenation illumination system and configured to direct the rejuvenation illumination system to illuminate the imaging sensor for one or more illumination cycles during a non-imaging state of the imaging sensor.
Abstract:
An inspection system with selectable apodization includes an illumination source configured to illuminate a surface of a sample, a detector configured to detect at least a portion of light emanating from the surface of the sample, the illumination source and the detector being optically coupled via an optical pathway of an optical system, a selectably configurable apodization device disposed along the optical pathway, wherein the apodization device includes one or more apodization elements operatively coupled to one or more actuation stages configured to selectably actuate the one or more apodization elements along one or more directions, and a control system communicatively coupled to the one or more actuation and configured to selectably control apodization of illumination transmitted along the optical pathway by controlling an actuation state of the one or more apodization elements.
Abstract:
An inspection system with selectable apodization includes a selectably configurable apodization device disposed along an optical pathway of an optical system. The apodization device includes one or more apodization elements operatively coupled to one or more actuation stages. The one or more actuation stages are configured to selectably actuate the one or more apodization elements along one or more directions. The inspection system includes a control system communicatively coupled to the one or more actuation stages. The control system is configured to selectably control an actuation state of at the one or more apodization elements so as to apply a selected apodization profile formed with the one or more apodization elements.
Abstract:
An inspection system with selectable apodization includes a selectably configurable apodization device disposed along an optical pathway of an optical system. The apodization device includes one or more apodization elements operatively coupled to one or more actuation stages. The one or more actuation stages are configured to selectably actuate the one or more apodization elements along one or more directions. The inspection system includes a control system communicatively coupled to the one or more actuation stages. The control system is configured to selectably control an actuation state of at the one or more apodization elements so as to apply a selected apodization profile formed with the one or more apodization elements.
Abstract:
An inspection system with selectable apodization includes an illumination source configured to illuminate a surface of a sample, a detector configured to detect at least a portion of light emanating from the surface of the sample, the illumination source and the detector being optically coupled via an optical pathway of an optical system, a selectably configurable apodization device disposed along the optical pathway, wherein the apodization device includes one or more apodization elements operatively coupled to one or more actuation stages configured to selectably actuate the one or more apodization elements along one or more directions, and a control system communicatively coupled to the one or more actuation and configured to selectably control apodization of illumination transmitted along the optical pathway by controlling an actuation state of the one or more apodization elements.
Abstract:
The present invention for imaging sensor rejuvenation may include a rejuvenation illumination system configured to selectably illuminate a portion of an imaging sensor of an imaging system with illumination suitable for at least partially rejuvenating the imaging sensor degraded by exposure to at least one of extreme ultraviolet light or deep ultraviolet light; and a controller communicatively coupled to the rejuvenation illumination system and configured to direct the rejuvenation illumination system to illuminate the imaging sensor for one or more illumination cycles during a non-imaging state of the imaging sensor.