Abstract:
The optical device comprises a first substrate comprising at least one optical structure comprising a main portion and a surrounding portion at least partially surrounding said main portion. The device furthermore comprises non-transparent material applied onto said surrounding portion. The opto-electronic module comprises a plurality of these optical devices comprised in said first substrate.The method for manufacturing an optical device comprises the steps of a) providing a first substrate comprising at least one optical structure comprising a main portion and a surrounding portion at least partially surrounding said main portion; and b) applying a non-transparent material onto at least said surrounding portion. Said non-transparent material is present on at least said surrounding portion still in the finished optical device.
Abstract:
Fabricating optical devices can include mounting a plurality of singulated lens systems over a substrate, adjusting a thickness of the substrate below at least some of the lens systems to provide respective focal length corrections for the lens systems, and subsequently separating the substrate into a plurality of optical modules, each of which includes one of the lens systems mounted over a portion of the substrate. Adjusting a thickness of the substrate can include, for example, micro-machining the substrate to form respective holes below at least some of the lens systems or adding one or more layers below at least some of the lens systems so as to correct for variations in the focal lengths of the lens systems.
Abstract:
Then optical device comprises a first member (P) and a second member (O) and, arranged between said first and second members, a third member (S) referred to as spacer. The spacer (S) comprises one or more portions referred to as distancing portions (Sd) in which the spacer has a vertical extension referred to as maximum vertical extension; at least two separate portions referred to as open portions (4) in which no material of the spacer is present; and one or more portions referred to as structured portions (Sb) in which material of the spacer is present and in which the spacer has a vertical extension smaller than said maximum vertical extension. Such optical devices can be used in or as multi-aperture cameras.
Abstract:
The waveguide structure can be manufactured on wafer-scale and comprises a holding structure and a first and a second waveguides each having a core and two end faces. The holding structure comprises a separation structure being arranged between the first and the second waveguide and provides an optical separation between the first and the second waveguide in a region between the end faces of the first and second waveguides. A method for manufacturing such a waveguide structure with at least one waveguide comprises shaping replication material by means of tool structures to obtain the end faces, hardening the replication material and removing the tool structures from a waveguide structures wafer comprising a plurality of so-obtained waveguides.
Abstract:
Optical modules are made using customizable spacers to reduce variations in the focal lengths of the optical channels, to reduce the occurrence of tilt of the optical channels, and/or prevent adhesive from migrating to active portions of an image sensor.
Abstract:
The wafer-level method for applying N≧2 first elements to a first side of a substrate, wherein the substrate has at the first side a first surface including the steps of providing the substrate, wherein at least N barrier members are present at the first side, and wherein each barrier member is associated with one of the first elements. For each of the first elements, the method includes bringing a first amount of a hardenable material in a flowable state in contact with the first surface, the first amount of hardenable material being associated with the first element; controlling a flow of the first amount of hardenable material on the first surface with the associated barrier member; and hardening the first amount of hardenable material to interconnect the first surface and the respective element.
Abstract:
The optical device comprises a first substrate (SI) comprising at least one optical structure (1) comprising a main portion (2) and a surrounding portion (3) at least partially surrounding said main portion. The device furthermore comprises non-transparent material (5, 5a, 5b) applied onto said surrounding portion. The opto-electronic module comprises a plurality of these optical devices comprised in said first substrate. The method for manufacturing an optical device comprises the steps of a) providing a first substrate comprising at least one optical structure comprising a main portion and a surrounding portion at least partially surrounding said main portion; and b) applying a non-transparent material onto at least said surrounding portion. Said non-transparent material is present on at least said surrounding portion still in the finished optical device.
Abstract:
An opto-electronic sensor module (e.g., an optical proximity sensor module) includes a substrate, a light emitter mounted on a first surface of the substrate, the light emitter being operable to emit light at a first wavelength, and a light detector mounted on the first surface of the substrate, the light detector being operable to detect light at the first wavelength. The module includes an optics member disposed substantially parallel to the substrate, and a separation member disposed between the substrate and the optics member. The separation member may surround the light emitter and the light detector, and may include a wall portion that extends from the substrate to the optics member and that separates the light emitter and the light detector from one another. The separation member may be composed, for example, a thermosetting polymer material, a UV-curing polymer material or a visible light-curing polymer material, wherein the separation member further includes one or more inorganic fillers and/or dyes that make the separation member substantially non-transparent to light detectable by the light detector and/or emitted by the light emitter.
Abstract:
An optical proximity sensor module includes a substrate, a light emitter mounted on a first surface of the substrate, the light emitter being operable to emit light at a first wavelength, and a light detector mounted on the first surface of the substrate, the light detector being operable to detect light at the first wavelength. The module includes an optics member disposed substantially parallel to the substrate, and a separation member, wherein the separation member is disposed between the substrate and the optics member. Multiple modules can be fabricated in a wafer-level process and can be composed of reflowable materials so that the modules can be incorporated more easily into devices whose manufacture occurs, at least in part, at elevated temperatures when the module is integrated into the device or during subsequent manufacturing processes.
Abstract:
Fabricating optical devices can include mounting a plurality of singulated lens systems over a substrate, adjusting a thickness of the substrate below at least some of the lens systems to provide respective focal length corrections for the lens systems, and subsequently separating the substrate into a plurality of optical modules, each of which includes one of the lens systems mounted over a portion of the substrate. Adjusting a thickness of the substrate can include, for example, micro-machining the substrate to form respective holes below at least some of the lens systems or adding one or more layers below at least some of the lens systems so as to correct for variations in the focal lengths of the lens systems.