Abstract:
A light modulation device includes a phase-modulation type spatial light modulator having a plurality of two-dimensionally arrayed pixels and modulating a phase of input light for each pixel with a modulation pattern, a modulation pattern setting unit setting a target modulation pattern for modulating the phase of the light, a correction coefficient setting unit setting a correction coefficient α of α≧1 according to pixel structure characteristics of the spatial light modulator and pattern characteristics of the target modulation pattern, and a modulation pattern correction unit determining a corrected modulation pattern to be presented on the plurality of pixels of the spatial light modulator by multiplying the target modulation pattern by the correction coefficient α.
Abstract:
The present invention relates to a phase modulating apparatus capable of highly accurately and easily correcting the phase modulation characteristic of a reflective electric address spatial light modulator even when a condition of input light is changed. In the LCOS phase modulating apparatus, an input unit inputs the condition of the input light, and a processing unit sets an input value for each pixel. A correction value deriving unit determines a correction condition according to the condition of the input light. A control input value converting unit converts the input value set for each pixel into a corrected input value based on the correction condition. An LUT processing unit converts the corrected input value into a voltage value, and drives each pixel by using a drive voltage equivalent to the converted voltage value.
Abstract:
A light control device 1 includes a light source 10, a prism 20, a spatial light modulator 30, a drive unit 31, a control unit 32, a lens 41, an aperture 42, and a lens 43. The spatial light modulator 30 is a phase modulating spatial light modulator, includes a plurality of two-dimensionally arrayed pixels, is capable of phase modulation in each of these pixels in a range of 4π or more, and presents a phase pattern to modulate the phase of light in each of the pixels. This phase pattern is produced by superimposing a blazed grating pattern for light diffraction and a phase pattern having a predetermined phase modulation distribution, and with a phase modulation range of 2π or more.
Abstract:
An intensity spectrum designing unit of a data generating device includes an initial value setting unit that sets a plurality of objects of a first generation of an intensity spectrum function A(ω) and a phase spectrum function Ψ(ω), an evaluation value calculating unit that calculates an evaluation value for each of a plurality of objects of an n-th generation, an object selecting unit that selects two or more objects used for generating a plurality of objects of an (n+1)-th generation among objects of the n-th generation on the basis of superiority of the evaluation value, and a next-generation generating unit that generates a plurality of objects of the (n+1)-th generation on the basis of the selected two or more objects. The evaluation value calculating unit, the object selecting unit, and the next-generation generating unit repeat processes while 1 is added to n until a predetermined condition is satisfied.
Abstract:
An iterative Fourier transform unit in a modulation pattern calculation apparatus performs a Fourier transform on a waveform function including an intensity spectrum function and a phase spectrum function, performs a replacement of a temporal intensity waveform function based on a desired waveform after the Fourier transform, and then performs an inverse Fourier transform. The iterative Fourier transform unit performs the replacement using a result of multiplying a function representing the desired waveform by a coefficient, and the coefficient has a value in which a difference between the function after the multiplication and the temporal intensity waveform function after the Fourier transform is smaller than a difference before the multiplication of the coefficient.
Abstract:
In an apparatus for modulating light, an spatial light modulator includes a plurality of pixels and configured to modulate input light in response to a drive voltage for each of the pixels. An input value setting unit is configured to set an input value for the each of pixels. The input value is a digital value, an entire gray level of the digital value is “N”, and “N” is a natural number. A converting unit is configured to convert the input value to a control value. A control value is a digital value, an entire gray level of the control value is “M”, and “M” is a natural number greater than “N”. A driving unit is configured to convert the control value to a voltage value and drive the each of the pixels in response to the drive voltage corresponding to the voltage value.
Abstract:
A beam expander includes a first lens unit including one of an SLM or a VFL, a second lens unit being optically coupled to the first lens unit and including one of an SLM or a VFL, and a control unit controlling focal lengths of the first and second lens units. A distance between the first and second lens units is invariable. The control unit controls the focal lengths of the first and second lens units such that a light diameter D1 of light input to the first lens unit and a light diameter D2 of light output from the second lens unit are different from each other.
Abstract:
An adaptive optics system includes a spatial light modulator configured to spatially modulate a phase of an optical image incident on a modulation surface and a wavefront sensor including a lens array having a plurality of two-dimensionally arranged lenses and an optical detection element for detecting a light intensity distribution including converging spots formed by the lens array and configured to receive the optical image after the modulation from the spatial light modulator, and compensates for wavefront distribution by controlling a phase pattern displayed in the spatial light modulator based on a wavefront shape of the optical image obtained from the light intensity distribution, wherein a correspondence relation between the modulation surface and the wavefront sensor is adjusted.
Abstract:
In an aberration-correcting method according to an embodiment of the present invention, in an aberration-correcting method for a laser irradiation device 1 which focuses a laser beam on the inside of a transparent medium 60, aberration of a laser beam is corrected so that a focal point of the laser beam is positioned within a range of aberration occurring inside the medium. This aberration range is not less than n×d and not more than n×d+Δs from an incidence plane of the medium 60, provided that the refractive index of the medium 60 is defined as n, a depth from an incidence plane of the medium 60 to the focus of the lens 50 is defined as d, and aberration caused by the medium 60 is defined as Δs.
Abstract:
A beam shaping device includes a first phase modulation unit including a phase-modulation type SLM, and displaying a first phase pattern for modulating a phase of input light, a second phase modulation unit including a phase-modulation type SLM, being optically coupled to the first phase modulation unit, and displaying a second phase pattern for further modulating a phase of light phase-modulated by the first phase modulation unit, and a control unit providing the first and second phase patterns to the first and second phase modulation units, respectively. The first and second phase patterns are phase patterns for approximating an intensity distribution and a phase distribution of light output from the second phase modulation unit, to predetermined distributions.