Abstract:
A method for providing a graphical user interface (GUI) and an electronic device using the method are provided. The method includes forming one or more groups of GUI items other than a GUI item selected by a user, moving the GUI items in the one or more groups, and enlarging and displaying the selected item on an area formed by movement of the GUI items. Therefore, it is possible to provide a GUI which enables easy manipulation and which is displayed with superior visual effect on a screen that is relatively small in size.
Abstract:
Provided are a nonvolatile memory device having a vertical folding structure and a method of manufacturing the nonvolatile memory device. A semiconductor structure includes first and second portions that are substantially vertical. A plurality of memory cells are arranged along the first and second portions of the semiconductor structure and are serially connected.
Abstract:
Provided are a non-volatile memory device and a method of fabricating the same. The non-volatile memory device may include a substrate and a plurality of semiconductor pillars on the substrate. A plurality of control gate electrodes may be stacked on the substrate and intersecting the plurality of semiconductor pillars. A plurality of dummy electrodes may be stacked adjacent to the plurality of control gate electrodes on the substrate, the plurality of dummy electrodes being spaced apart from the plurality of control gate electrodes. A plurality of via plugs may be connected to the plurality of control gate electrodes. A plurality of wordlines may be on the plurality of via plugs. Each of the plurality of via plugs may penetrate a corresponding one of the plurality of control gate electrodes and at least one of the plurality of dummy electrodes.
Abstract:
In a method of growing silicon (Si) using a reactor, a supercritical fluid including a silicon Si source and hydrogen flows in the reactor, and the Si source reacts with hydrogen. A base substrate of a solar cell may be formed with Si made using the method of growing silicon (Si). The supercritical fluid may be a fluid in which Si is not oxidized and may be, for example, a CO2 supercritical fluid with a pressure of about 60 to about 200 atm. The Si source may be TriChloroSilane (TCS) (SiCl3H) or SiH4.
Abstract:
Electron beam annealing apparatuses for annealing a thin layer on a substrate and annealing methods using the apparatuses are provided. The electron beam annealing apparatuses may include an electron beam scanning unit that may scan a pulsed electron beam onto a substrate.
Abstract:
Provided are a material layer forming apparatus using a supercritical fluid, a material layer forming system including the apparatus, and a method of forming a material layer using the system. The material layer forming system may include a high pressure pump supplying a supercritical fluid to a precursor storage container and the material layer forming apparatus, and maintaining the internal pressure of the precursor storage container, a reactant material storage container at a pressure such that the supercritical fluid is in a supercritical state, and a material layer forming apparatus. The material layer forming system may further include a pressure gauge adjusting the pressure of the material layer forming apparatus. The precursor of the precursor storage container may be supplied to the material layer forming apparatus using the supercritical fluid.
Abstract:
A phase-change memory device is provided. The phase-change memory device includes a phase-change memory cell array including a first memory block having a plurality of phase-change memory cells each connected between each of a plurality of bit lines and a first word line, a second memory block having a plurality of phase-change memory cells each connected between each of the plurality of bit lines and a second word line, and first and second pull-down transistors pulling-down each voltage level of the first and the second word lines and sharing a node and a row driver including a first and a second pull-up transistor pulling-up each voltage level of the first and the second word lines.
Abstract:
A multi-port phase change random access memory (PRAM) cell, includes a PRAM element including a phase change material, a writing controller configured to operate in correspondence with a writing word line, the writing controller connecting a writing bit line to the PRAM element, and a reading controller configured to operate in correspondence with a reading word line, the reading controller connecting the PRAM element to a reading bit line.
Abstract:
A conductive carbon nanotube tip and a manufacturing method thereof are provided. The conductive carbon nanotube tip includes a carbon nanotube tip substantially vertically placed on a substrate, and a ruthenium coating layer covering a surface of the carbon nanotube tip and extending to at least a part of the substrate. The manufacturing method includes substantially vertically placing a carbon nanotube tip on a substrate, and forming a ruthenium coating layer on the carbon nanotube tip and at least a part of the substrate.
Abstract:
A developer cleaning method for a liquid electrophotographic printer is achieved by developing an electrostatic latent image by supplying developer supplied from an injection nozzle to a photoreceptor medium via a development roller, removing drip developer formed on the photoreceptor web between a squeegee roller and the development roller, removing developer remaining between the injection nozzle and the development roller, and reducing an electrical potential of the development roller after development so that toner particles included in the drip developer are transferred to the development roller due to a difference in electrical potential.