Abstract:
The present application discloses an organic light emitting diode display substrate. The organic light emitting diode display substrate includes a base substrate; an auxiliary cathode on the base substrate; a spacer layer on the base substrate and including a plurality of spacers; and a flexible transparent conductive layer on a side of each of the plurality of spacers distal to the base substrate. The flexible transparent conductive layer is electrically connected to the auxiliary cathode.
Abstract:
Embodiments of the invention provide an array substrate and a method of manufacturing the same. The method comprises: forming a gate electrode pattern, a gate insulation layer, an active layer pattern and an etching stopping layer on a substrate; forming a photoresist layer on the etching stopping layer; performing a single patterning process on the photoresist layer, such that photoresist in the first region is partially etched off, photoresist in the second region is completely etched off, and photoresist in the third region is completely remained; and performing a single etching process, such that residual photoresist in the first region and a portion of the etching stopping layer in the first region are etched off, and at the same time, a portion of the etching stopping layer and a portion of the gate insulation layer in the second region are etched off.
Abstract:
A thin film transistor and a manufacturing method thereof, a display substrate and a display device are provided. The method of manufacturing the thin film transistor comprises forming an active layer (4) having characteristics of crystal orientation of C-axis on a substrate (1) by using indium gallium zinc oxide (InGaO3(ZnO)m), where m≧2. The active layer fabricated with InGaO3(ZnO)m has a good electron mobility, and the quality of the fabricated active layer is improved.
Abstract:
The present invention provides a thin film transistor, a fabricating method thereof, an array substrate and a display device. The fabricating method of the thin film transistor of the present invention comprises: forming an inducing layer film and an oxide active layer film in contact therewith on a substrate, the oxide active layer film being provided above or below the inducing layer film; and heating the substrate subjected to the above step, crystallizing the oxide active layer film through inducement of the inducing layer film to form a crystalline oxide active layer.
Abstract:
An array substrate, a manufacturing method thereof and a display device are disclosed. The array substrate includes a substrate (10) and first thin-film transistors (TFTs) (21) and first electrodes (40) formed on the substrate (10). The first TFT (21) includes a gate electrode (200), an active layer (202), a source electrode (205) and a drain electrode (204). The first electrode (40) is electrically connected with the drain electrode (204) of the first TFT (21), at least covers an area of the active layer (202) of the first TFT, not overlapped with the source electrode (205) and the drain electrode (204), and can absorb ultraviolet (UV) light. The array substrate can solve the problem of reducing the display performance of the display device as the performances degrade and even fail due to UV irradiation of the TFTs.
Abstract:
The present application provides a method for manufacturing a microelectrode film. The method includes: forming at least one recess on the carrier substrate by isotropic etching; forming a microelectrode seed pattern in the recess; growing a microelectrode in the recess by using the microelectrode seed pattern; making a first substrate to be in contact with a side of the carrier substrate having the recess thereon; separating the microelectrode from the carrier substrate to transfer the microelectrode onto the first substrate.
Abstract:
A photodetector, includes a photosensitive layer, a thin film transistor, and a sensing electrode, the sensing electrode connected to one of source/drain electrodes of the thin film transistor to transmit a signal generated by the photosensitive layer to the thin film transistor; wherein the photodetector further is a hydrogen barrier layer which is disposed between the photosensitive layer and the thin film transistor and is configured to inhibit hydrogen of the photosensitive layer from entering the thin film transistor. A method of manufacturing a photodetector is further provided.
Abstract:
The present disclosure provides a flat panel detector and a medical image detection device. The flat panel detector includes a base substrate, wherein the base substrate is divided into a plurality of detection units, each detection unit includes a first absorbing layer and a second absorbing layer, both of which are arranged on the base substrate in a laminating manner, the second absorbing layer is located on one side, away from the base substrate, of the first absorbing layer, and an energy level of rays absorbed by the second absorbing layer is smaller than that of rays absorbed by the first absorbing layer; a voltage supply electrode structure; and an output circuit, electrically connected to the voltage supply electrode structure and configured to output a first detection signal of the first absorbing layer and a second detection signal of the second absorbing layer.
Abstract:
Embodiments of the present disclosure relate to a thin film transistor, a method for manufacturing the same, a display panel, and a display device. The thin film transistor includes a substrate, an active layer located on the substrate, and a light shielding layer, a first dielectric layer, and a second dielectric layer located between the substrate and the active layer, wherein the first dielectric layer is located between the second dielectric layer and the substrate, and wherein a refractive index of the first dielectric layer is greater than a refractive index of the second dielectric layer.
Abstract:
A display panel includes a thin film transistor layer (4), a grating layer (3), a transparent anode layer (2), an emission layer (1), and a colored layer (6) opposite the emission layer (1). The colored layer (6) may include a plurality of color filters. The grating layer (3) may be between the thin film transistor layer (4) and the transparent anode layer (2). The grating layer (3) may include a plurality of blazed gratings corresponding to the plurality of color filters, respectively.