Abstract:
A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer. Short purge channels may be provided to deliver some of the sweep gas to regions surrounding the spacers to cause a continuous flow of protective purge gas around the spacers. A common bottom section may cooperate with a plurality of different top sections to form segmented susceptors suitable for supporting various sized wafers.
Abstract:
A gas curtain for use with a semiconductor processing system to prevent unwanted gases from entering a processing chamber. The gas curtain includes both upward and downward flows of gas surrounding an isolation valve adjacent a delivery port into the processing chamber. In the valve open position, the downward flows extends between the valve and the delivery port, and the upward flow extends in an opposite direction behind the isolation valve. In the valve closed position, one of the flows extends through a slot in the isolation valve, while the other flow is directed in an opposite direction on the rear side of the isolation valve. In a method of using the gas curtain apparatus, a pick-up wand operating on a Bernoulli principal uses gases which are unwanted in the processing chamber, and just prior to loading wafers into the processing chamber, the gas flow in the Bernoulli wand is switched from a first gas to a second gas. Desirably, the second gas is hydrogen. The Bernoulli wand passes through the gas curtain before entering the processing chamber to remove any fugitive particles, moisture and unwanted gases. An exhaust located proximate to an input/output chamber creates a continuous pressure gradient in the handling chamber toward the input/output chamber further helping to prevent unwanted gases from entering the processing chamber.
Abstract:
The present invention provides a general purpose driver circuit. The driver circuit is connected to a load. The driver circuit includes a controller for producing a control signal indicative of a desired output current. The driver circuit generates an output current having a magnitude responsive to the magnitude of the control signal. The driver circuit produces a system voltage feedback signal and an output voltage feedback signal and responsively performs output load condition diagnostics.
Abstract:
An appparatus for receiving signals from any of a plurality of sensor types is provided and includes pull-up circuitry connected to a circuit input; data edge conditioning circuitry having a digital output and an input connected to said circuit input; and an analog output connected to said circuit input and said pull-up circuitry.
Abstract:
A wafer support system comprising a susceptor having top and bottom sections and gas flow passages therethrough. One or more spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer. Short purge channels may be provided to deliver some of the sweep gas to regions surrounding the spacers to cause a continuous flow of protective purge gas around the spacers.
Abstract:
An improved chemical vapor deposition reaction chamber having an internal support plate to enable reduced pressure processing. The chamber has a vertical-lateral lenticular cross-section with a wide horizontal dimension and a shorter vertical dimension between bi-convex upper and lower walls. A central horizontal support plate is provided between two lateral side rails of the chamber. A large rounded rectangular aperture is formed in the support plate for positioning a rotatable susceptor on which a wafer is placed. The shaft of the susceptor extends downward through the aperture and through a lower tube depending from the chamber. The support plate segregates the reaction chamber into an upper region and a lower region, with purge gas being introduced through the lower tube into the lower region to prevent unwanted deposition therein. A temperature compensation ring is provided surrounding the susceptor and supported by fingers connected to the support plate. The temperature compensation ring may be circular or may be built out to conform to the rounded rectangular shape of the support plate aperture. The ring may extend farther downstream from the susceptor than upstream. A separate sacrificial quartz plate may be provided between the circular temperature compensation ring and the rounded rectangular aperture. The quartz plate may have a horizontal portion and a vertical lip in close abutment with the aperture to prevent devitrification of the support plate. A gas injector abuts an inlet flange of the chamber and injects process gas into the upper region and purge gas into the lower region. The gas injector includes a plurality of independently controlled channels disposed laterally across the chamber, the channels merging at an outlet of the injector to allow mixing of the adjacent longitudinal edges of the separate flows well before reaching the wafer.
Abstract:
A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer. Short purge channels may be provided to deliver some of the sweep gas to regions surrounding the spacers to cause a continuous flow of protective purge gas around the spacers. A common bottom section may cooperate with a plurality of different top sections to form segmented susceptors suitable for supporting various sized wafers.
Abstract:
A method and apparatus for controllably preventing an implement from damaging a work machine or itself, which may occur if the implement strikes the work machine, by restricting the movement of the implement. A boundary is established a predetermined distance from the work machine. By controllably restricting the movement of the implement when it approaches the boundary, the implement is prevented from making contact with the work machine.
Abstract:
A system and method for managing access of at least one mobile machine to a load resource having a loading machine including a queue manager adapted to deliver a queue position request signal, a resource manager adapted to control access to the load resource, and a load manager adapted to determine a load point for a mobile machine.
Abstract:
The invention is a system and method for managing a resource having multiple entry points. Each mobile machine includes a queue manager for generating a queue position request upon approach to the resource. A resource manager establishes queues, one for each entry point to the resource, to control access to the resource. Upon receiving a queue position request from an approaching mobile machine, the resource manager determines which queue to place the mobile machine, and then generates a queue position and sends a queue position signal to the approaching mobile machine.